Search results

1 – 10 of over 3000
Article
Publication date: 1 April 1992

S. BRANDON and J.J. DERBY

A finite element method for the analysis of combined radiative and conductive heat transport in a finite axisymmetric configuration is presented. The appropriate…

Abstract

A finite element method for the analysis of combined radiative and conductive heat transport in a finite axisymmetric configuration is presented. The appropriate integro‐differential governing equations for a grey and non‐scattering medium with grey and diffuse walls are developed and solved for several model problems. We consider axisymmetric, cylindrical geometries with top and bottom boundaries of arbitrary convex shape. The method is accurate for media of any optical thickness and is capable of handling a wide array of axisymmetric geometries and boundary conditions. Several techniques are presented to reduce computational overhead, such as employing a Swartz‐Wendroff approximation and cut‐off criteria for evaluating radiation integrals. The method is successfully tested against several cases from the literature and is applied to some additional example problems to demonstrate its versatility. Solution of a free‐boundary, combined‐mode heat transfer problem representing the solidification of a semitransparent material, the Bridgman growth of an yttrium aluminium garnet (YAG) crystal, demonstrates the utility of this method for analysis of a complex materials processing system. The method is suitable for application to other research areas, such as the study of glass processing and the design of combustion furnace systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 2 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 September 2012

H. Amiri, S.H. Mansouri and P.J. Coelho

The solution of radiative heat transfer problems in participating media is often obtained using the standard discrete ordinates method (SDOM). This method produces anomalies…

Abstract

Purpose

The solution of radiative heat transfer problems in participating media is often obtained using the standard discrete ordinates method (SDOM). This method produces anomalies caused by ray effects if radiative boundary conditions have discontinuities or abrupt changes. Ray effects may be mitigated using the modified discrete ordinates method (MDOM), which is based on superposition of the solutions obtained by considering separately radiation from the walls and radiation from the medium. The purpose of this paper is to study the role of ray effects in combined conduction‐radiation problems and investigate the superiority of the MDOM over SDOM.

Design/methodology/approach

The MDOM has been used to calculate radiative heat transfer in irregular geometries using body‐fitted coordinates. Here, the blocked‐off region concept, originally developed in computational fluid dynamics, is used along with the finite volume method and SDOM or MDOM to solve combined conduction‐radiation heat transport problems in irregular geometries. Enclosures with an absorbing, emitting and isotropically or anisotropically scattering medium are analyzed.

Findings

The results confirm the capability of the MDOM to minimize the anomalies due to ray effects in combined heat transfer problems, and demonstrate that MDOM is more computationally efficient than SDOM.

Originality/value

The paper demonstrates the application of MDOM to combined conduction‐radiation heat transfer problems in irregular geometries using blocked‐off method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 May 2019

Mehdi Zare and Sadegh Sadeghi

This study aims to perform a comprehensive investigation to model the thermal characteristics of a coupled conduction-radiation heat transfer in a two-dimensional irregular…

Abstract

Purpose

This study aims to perform a comprehensive investigation to model the thermal characteristics of a coupled conduction-radiation heat transfer in a two-dimensional irregular enclosure including a triangular-shaped heat source.

Design/methodology/approach

For this purpose, a promising hybrid technique based on the concepts of blocked-off method, FVM and DOM is developed. The enclosure consists of several horizontal, vertical and oblique walls, and thermal conductivity within the enclosure varies directly with temperature and indirectly with position. To simplify the complex geometry, a promising mathematical model is introduced using blocked-off method. Emitting, absorbing and non-isotropic scattering gray are assumed as the main radiative characteristics of the steady medium.

Findings

DOM and FVM are, respectively, applied for solving radiative transfer equation (RTE) and the energy equation, which includes conduction, radiation and heat source terms. The temperature and heat flux distributions are calculated inside the enclosure. For validation, results are compared with previous data reported in the literature under the same conditions. Results and comparisons show that this approach is highly efficient and reliable for complex geometries with coupled conduction-radiation heat transfer. Finally, the effects of thermo-radiative parameters including surface emissivity, extinction coefficient, scattering albedo, asymmetry factor and conduction-radiation parameter on temperature and heat flux distributions are studied.

Originality/value

In this paper, a hybrid numerical method is used to analyze coupled conduction-radiation heat transfer in an irregular geometry. Varying thermal conductivity is included in this analysis. By applying the method, results obtained for temperature and heat flux distributions are presented and also validated by the data provided by several previous papers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 October 2021

Akram Mazgar, Khouloud Jarray, Fadhila Hajji and Fayçal Ben Nejma

This paper aims to numerically analyze the effect of non-gray gas radiation on mixed convection in a horizontal circular duct with isothermal partial heating from the sidewall…

Abstract

Purpose

This paper aims to numerically analyze the effect of non-gray gas radiation on mixed convection in a horizontal circular duct with isothermal partial heating from the sidewall. The influence of heater location on heat transfer, fluid flow and entropy generation is given and discussed in this study.

Design/methodology/approach

The numerical computation of heat transfer and fluid flow has been developed by the commercial finite element software COMSOL Multiphysics. Radiation code is developed based on the T10 Ray-Tracing method, and the radiative properties of the medium are computed based on the statistical narrow band correlated-k model.

Findings

The obtained results depicted that the radiation considerably contributes to the temperature homogenization of the gas. The findings highlight the impact of the heater location on swirling flow. It is also shown that the laterally heating process provides better energy efficiency than heating from the top of the enclosure.

Originality/value

This study is performed to improve heat transfer and to minimize entropy generation. Therefore, it is conceivable to improve the model design of industrial applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 2006

H. Bouali and A. Mezrhab

This paper presents a numerical investigation of the interaction of surfaces radiation with developing laminar free convective heat transfer in a divided vertical channel. The…

Abstract

Purpose

This paper presents a numerical investigation of the interaction of surfaces radiation with developing laminar free convective heat transfer in a divided vertical channel. The influence of the radiation on the heat transfer and on the air flow is studied for various sizes (width and length) of the plate.

Design/methodology/approach

The specifically developed numerical code is based on the utilization of the finite volume method. The SIMPLER algorithm for the pressure‐velocity coupling is adopted. The view factors are determined by using boundary elements to fit the surfaces, an algorithm solving the shadow effect and a Monte Carlo method for the numerical integrations.

Findings

Results obtained show that the radiation: plays a very important role on the paces of the isotherms, especially at Ra≥1,600; increases considerably the average wall Nusselt number; and increases the mass flow rate and the average channel Nusselt number at high Rayleigh numbers. The plate location has a significant effect on the heat transfer only in presence of the radiation exchange. The increase of both length and width of the plate causes a decrease of the heat transfer and the mass flow rate.

Research limitations/implications

The use of the code is limited to the flow that is assumed to be incompressible, laminar and two dimensional. The radiative surfaces are assumed diffuse‐gray.

Practical implications

Natural convection in vertical channels formed by parallel plates has received significant attention because of its interest and importance in industrial applications. Some applications are solar collectors, fire research, electronic cooling, aeronautics, chemical apparatus, building constructions, nuclear engineering, etc.

Originality/value

In comparison to the most of the previous studies on natural convection in partitioned channels, the radiation exchange was neglected. This study takes into account the radiation exchange in a divided channel.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 16 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 December 2023

Marjan Sharifi, Majid Siavashi and Milad Hosseini

Present study aims to extend the lattice Boltzmann method (LBM) to simulate radiation in geometries with curved boundaries, as the first step to simulate radiation in complex…

Abstract

Purpose

Present study aims to extend the lattice Boltzmann method (LBM) to simulate radiation in geometries with curved boundaries, as the first step to simulate radiation in complex porous media. In recent years, researchers have increasingly explored the use of porous media to improve the heat transfer processes. The lattice Boltzmann method (LBM) is one of the most effective techniques for simulating heat transfer in such media. However, the application of the LBM to study radiation in complex geometries that contain curved boundaries, as found in many porous media, has been limited.

Design/methodology/approach

The numerical evaluation of the effect of the radiation-conduction parameter and extinction coefficient on temperature and incident radiation distributions demonstrates that the proposed LBM algorithm provides highly accurate results across all cases, compared to those found in the literature or those obtained using the finite volume method (FVM) with the discrete ordinates method (DOM) for radiative information.

Findings

For the case with a conduction-radiation parameter equal to 0.01, the maximum relative error is 1.9% in predicting temperature along vertical central line. The accuracy improves with an increase in the conduction-radiation parameter. Furthermore, the comparison between computational performances of two approaches reveals that the LBM-LBM approach performs significantly faster than the FVM-DOM solver.

Originality/value

The difficulty of radiative modeling in combined problems involving irregular boundaries has led to alternative approaches that generally increase the computational expense to obtain necessary radiative details. To address the limitations of existing methods, this study presents a new approach involving a coupled lattice Boltzmann and first-order blocked-off technique to efficiently model conductive-radiative heat transfer in complex geometries with participating media. This algorithm has been developed using the parallel lattice Boltzmann solver.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 November 2001

A. Raji and M. Hasnaoui

The interaction between mixed convection and thermal radiation in ventilated cavities with gray surfaces has been studied numerically using the Navier‐Stokes equations with the…

Abstract

The interaction between mixed convection and thermal radiation in ventilated cavities with gray surfaces has been studied numerically using the Navier‐Stokes equations with the Boussinesq approximation. The effect of thermal radiation on streamlines and isotherms is shown for different values of the governing parameters namely, the Rayleigh number (103 ≤ Ra ≤ 106), the Reynolds number (50 ≤ Re ≤ 5000) and the surfaces emissivity (0 ≤ ε≤ 1). The geometrical parameters are the aspect ratio of the cavity A = L’/H’ = 2 and the relative height of the openings B = h’/H’ = 1/4. Results of the study show that thermal radiation alters significantly the temperature distribution, the flow fields and the heat transfer across the active walls of the cavities.

Details

Engineering Computations, vol. 18 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2006

A. Bahlaoui, A. Raji and M. Hasnaoui

The aim of this work consists of studying numerically the coupling between natural convection and radiation in a tall rectangular cavity by examining the effect of the emissivity…

Abstract

Purpose

The aim of this work consists of studying numerically the coupling between natural convection and radiation in a tall rectangular cavity by examining the effect of the emissivity of the walls, ε, the Rayleigh number, Ra, and the inclination of the cavity, θ, on the flow characteristics and the existence ranges of the multiple solutions obtained.

Design/methodology/approach

The Navier‐Stokes equations were discretized by using a finite difference technique. The vorticity and energy equations were solved by the alternating direction implicit method. Values of the stream function were obtained by using the point successive over‐relaxation method. The calculation of the radiative heat exchange between the walls of the cavity is based on the radiosity method.

Findings

For an inclined cavity (θ=45°), up to four different solutions are obtained and their range of existence is found to be strongly dependent on the Rayleigh number and the emissivity of the cavity walls. In the case of a vertical cavity (θ=90°), the weak reduction of the convection effect due to radiation is largely compensated for by the contribution of the radiation which enhances the overall heat transfer through the cold surface of the cavity and favours the appearance of secondary cells.

Originality/value

The existence of multiple steady‐state solutions in an inclined cavity (θ=45°) and the number of the obtained solutions are affected by the presence of radiation. In face, the increase of the emissivity reduces the number of solutions for weak values of the Rayleigh number. Also, the increase of this parameter favours the multiplicity of solutions for all the considered values of the emissivity. For a vertical cavity (θ=90°), the effect of radiation generates an oscillatory convection for large values of the Rayleigh number.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 16 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 2014

Sofen K. Jena, Swarup K. Mahapatra and Amitava Sarkar

The current study aims to address the interaction between participating media radiation with thermo-gravitational convection of an electrically conducting fluid enclosed within a…

Abstract

Purpose

The current study aims to address the interaction between participating media radiation with thermo-gravitational convection of an electrically conducting fluid enclosed within a tilted enclosure under an externally imposed time-independent uniform magnetic field.

Design/methodology/approach

The differentially heated boundaries of the tilted enclosure are considered to be diffuse, gray and the enclosed fluid is assumed to be absorbing, emitting and isotropically scattering. The Navier-Stokes equations, meant for magneto convection are solved using modified MAC method. Gradient dependent consistent hybrid upwind scheme of second order is used for discretization of the convective terms. Discrete ordinate method, with S8 approximation, is used to model radiative transport equation in the presence of radiatively active medium.

Findings

Effect of uniform magnetic field with different magnitudes and orientations of cavity has been numerically simulated. The effect of participating media radiation has been investigated for different optical thicknesses, emissivities, scattering albedos and Planks number. The results are provided in both graphical and tabular forms. The flow lines, isotherms bring clarity in the understanding of flow behaviour and heat transfer characteristics.

Originality/value

Despite the idealized nature, the present study is quite essential to understand the cumbersome physics of realistic problem.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 November 2023

Dravesh Yadav, Ravi Sastri Ayyagari and Gaurav Srivastava

This paper numerically investigates the effect of cavity radiation on the thermal response of hollow aluminium tubes and facade systems subjected to fire.

Abstract

Purpose

This paper numerically investigates the effect of cavity radiation on the thermal response of hollow aluminium tubes and facade systems subjected to fire.

Design/methodology/approach

Finite element simulations were performed using ABAQUS 6.14. The accuracy of the numerical model was established through experimental and numerical results available in the literature. The proposed numerical model was utilised to study the effect of cavity radiation on the thermal response of aluminium hollow tubes and facade system. Different scenarios were considered to assess the applicability of the commonly used lumped capacitance heat transfer model.

Findings

The effects of cavity radiation were found to be significant for non-uniform fire exposure conditions. The maximum temperature of a hollow aluminium tube with 1-sided fire exposure was found to be 86% greater when cavity radiation was considered. Further, the time to attain critical temperature under non-uniform fire exposure, as calculated from the conventional lumped heat capacity heat transfer model, was non-conservative when compared to that predicted by the proposed simulation approach considering cavity radiation. A metal temperature of 550 °C was attained about 18 min earlier than what was calculated by the lumped heat capacitance model.

Research limitations/implications

The present study will serve as a basis for the study of the effects of cavity radiation on the thermo-mechanical response of aluminium hollow tubes and facade systems. Such thermo-mechanical analyses will enable the study of the effects of cavity radiation on the failure mechanisms of facade systems.

Practical implications

Cavity radiation was found to significantly affect the thermal response of hollow aluminium tubes and façade systems. In design processes, it is essential to consider the potential consequences of non-uniform heating situations, as they can have a significant impact on the temperature of structures. It was also shown that the use of lumped heat capacity heat transfer model in cases of non-uniform fire exposure is unsuitable for the thermal analysis of such systems.

Originality/value

This is the first detailed investigation of the effects of cavity radiation on the thermal response of aluminium tubes and façade systems for different fire exposure conditions.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of over 3000