Search results

1 – 10 of over 1000
Article
Publication date: 13 March 2020

Sedat Özer, Yaşar Erayman Yüksel and Yasemin Korkmaz

Design of bedding textiles that contact the human body affects the sleep quality. Bedding textiles contribute to comfort sense during the sleep duration, in addition to ambient…

Abstract

Purpose

Design of bedding textiles that contact the human body affects the sleep quality. Bedding textiles contribute to comfort sense during the sleep duration, in addition to ambient and bed microclimate. The purpose of this study is to evaluate the effects of different layer properties on the compression recovery and thermal characteristics of multilayer bedding textiles.

Design/methodology/approach

In this study, woven and knitted multilayer bedding textiles were manufactured from fabric, fiber, sponge and interlining, respectively. Different sponge thickness, fiber and interlining weight were used in the layers of samples. Later, the pilling resistance, compression and recovery, air permeability and thermal conductivity of multilayer bedding textiles were investigated.

Findings

The results indicated that samples with the higher layer weight and thickness provide better compression recovery and lower air permeability properties. It was also found that knitted surfaces show the higher air permeability than the woven surfaces depending on the fabric porosity. Layer properties have insignificant effect on the thermal conductivity values.

Originality/value

While researchers mostly focus on thermal comfort properties of garments, there are limited studies about comfort properties of bedding textiles in the literature. Furthermore, compression recovery properties of bedding textiles have also a great importance in terms of comfort. Originality of this study is that these properties were analyzed together.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 19 October 2022

Xiaorui Hu, Zihan Chen and Fengxin Sun

Current measurement methods for fabric comfort attributes generally suffer from either complicated testing processes and intricate measuring equipment or partial evaluation…

Abstract

Purpose

Current measurement methods for fabric comfort attributes generally suffer from either complicated testing processes and intricate measuring equipment or partial evaluation objectives and thus are difficult for effectively evaluating multidimensional human perceptions towards the comprehensive comfort of fabrics. The purpose of this paper is to develop a facile test device, namely fabric comfort tester, to achieve a comprehensive evaluation of human sensations in terms of sensorial, thermal and acoustic comfort in clothing.

Design/methodology/approach

The prototype of the designed device was introduced, which enables a simultaneous test for multiple physical and mechanical properties of fabrics based on a force sensor and a set of infrared sensors via constructing multi-deformation states of the measured fabrics. Eleven measurement indices extracted from the measurement curves are defined and interpreted based on correlation analysis. A series of regression models are developed by relating the measurement indices with subjective evaluation results and validated by a set of independent samples.

Findings

Human perceptions of sensorial, thermal and acoustic comfort in clothing can be predicted by the measured physical indices and the designed test device with the developed regression models provides an alternative method to characterize the fabric comfort attributes effectively.

Originality/value

The work develops a novel device for objective evaluation of fabric comfort properties by a simultaneous test, integrating the mechanical measurement with thermal test and thereby filling the gap between the existing evaluation methods and practical requirements for the digitalization of fabric comfort in present textile and garment trade.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 28 January 2020

John Carrell, Garrett Gruss and Elizabeth Gomez

This paper aims to provide a review of four-dimensional (4D) printing using fused-deposition modeling (FDM). 4D printing is an emerging innovation in (three-dimensional) 3D…

1394

Abstract

Purpose

This paper aims to provide a review of four-dimensional (4D) printing using fused-deposition modeling (FDM). 4D printing is an emerging innovation in (three-dimensional) 3D printing that encompasses active materials in the printing process to create not only a 3D object but also a 3D object that can perform an active function. FDM is the most accessible form of 3D printing. By providing a review of 4D printing with FDM, this paper has the potential in educating the many FDM 3D printers in an additional capability with 4D printing.

Design/methodology/approach

This is a review paper. The approach was to search for and review peer-reviewed papers and works concerning 4D printing using FDM. With this discussion of the shape memory effect, shape memory polymers and FDM were also made.

Findings

4D printing has become a burgeoning area in addivitive manufacturing research with many papers being produced within the past 3-5 years. This is especially true for 4D printing using FDM. The key findings from this review show the materials and material composites used for 4D printing with FDM and the limitations with 4D printing with FDM.

Research limitations/implications

Limitations to this paper are with the availability of papers for review. 4D printing is an emerging area of additive manufacturing research. While FDM is a predominant method of 3D printing, it is not a predominant method for 4D printing. This is because of the limitations of FDM, which can only print with thermoplastics. With the popularity of FDM and the emergence of 4D printing, however, this review paper will provide key resources for reference for users that may be interested in 4D printing and have access to a FDM printer.

Practical implications

Practically, FDM is the most popular method for 3D printing. Review of 4D printing using FDM will provide a necessary resource for FDM 3D printing users and researchers with a potential avenue for design, printing, training and actuation of active parts and mechanisms.

Social implications

Continuing with the popularity of FDM among 3D printing methods, a review paper like this can provide an initial and simple step into 4D printing for researchers. From continued research, the potential to engage general audiences becomes more likely, especially a general audience that has FDM printers. An increase in 4D printing could potentially lead to more designs and applications of 4D printed devices in impactful fields, such as biomedical, aerospace and sustainable engineering. Overall, the change and inclusion of technology from 4D printing could have a potential social impact that encourages the design and manufacture of such devices and the treatment of said devices to the public.

Originality/value

There are other 4D printing review papers available, but this paper is the only one that focuses specifically on FDM. Other review papers provide brief commentary on the different processes of 4D printing including FDM. With the specialization of 4D printing using FDM, a more in-depth commentary results in this paper. This will provide many FDM 3D printing users with additional knowledge that can spur more creative research in 4D printing. Further, this paper can provide the impetus for the practical use of 4D printing in more general and educational settings.

Details

Rapid Prototyping Journal, vol. 26 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 May 1994

Sachiko Sukigara, Hiroko Yokura and Masako Niwa

Non‐recovery of wool Futon padding was investigated by compression and creep tests. Simulation tests are also carried out to use the minuter model Futon. Fibre crimp was found to…

120

Abstract

Non‐recovery of wool Futon padding was investigated by compression and creep tests. Simulation tests are also carried out to use the minuter model Futon. Fibre crimp was found to be an important parameter to be considered in the non‐recovery of Futon. Futon padding which consists of crimpy fibre has large apparent fibre density and shows less reduction of thickness compared with those made from uncrimpy fibres. The moisture inside and outside the Futon has a large influence on the recovery process.

Details

International Journal of Clothing Science and Technology, vol. 6 no. 2/3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 27 September 2022

Shivangi Agarwal and Shalini Juneja

The purpose of this paper is to understand compression garment in the area of medical industry, compression garments were used initially for patients with circulatory problems…

Abstract

Purpose

The purpose of this paper is to understand compression garment in the area of medical industry, compression garments were used initially for patients with circulatory problems. External pressure was created by compression garments on the body surface which prevents blood clots, leg swelling and improves venous hemodynamics.

Design/methodology/approach

Compression rehabilitation is a significant element in the effective management of lower limb problems of people associated with venous, lymphatic, fat disorders like lipoedema.

Findings

Compression garments have been attributed primarily for the increase in blood flow, improvement in recovery, reduction in muscle vibration that increase stability, improvement in thermoregulation, decrease in muscle pain, elimination of blood lactate and creatine kinase after exercise.

Originality/value

Compression garments are extraordinary clothes that contain elastomeric yarns or fibers that are responsible for applying significant mechanical pressure on the required body surface for compressing, stabilizing and supporting underlying tissues.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 April 2002

A. Mukhopadyhay, A.K. Dash and V.K. Kothari

The effect of pick density, constituent filament fineness and heat‐setting on the fabric thickness and compressional properties have been studied before and after laundering. With…

Abstract

The effect of pick density, constituent filament fineness and heat‐setting on the fabric thickness and compressional properties have been studied before and after laundering. With the increase in pick density fabric thickness, compression and compressibility increases up to a certain extent. Coarser filament textured yarn fabric have higher thickness, compression and compressibility than that of finer filament textured yarn fabrics. Heat‐set fabrics possess higher thickness, compression and compressibility than the grey textured yarn fabrics. However, fabric compressional recovery and resiliency are mainly influenced by the fabric pick density rather than the effect of heat‐setting and filament fineness of constituent textured yarns. On laundering, fabric thickness, compression and compressibility improve particularly for the fabric of lower pick density. The effect of laundering is marginal on fabric compressional recovery and resiliency.

Details

International Journal of Clothing Science and Technology, vol. 14 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 December 1996

Sachiko Sukigara, Hiroko Yokura and Masaka Niwa

Investigates the effects of moisture transfer on the compression properties and the volume change of wool, polyester and cotton futon padding by taking a series of creep…

182

Abstract

Investigates the effects of moisture transfer on the compression properties and the volume change of wool, polyester and cotton futon padding by taking a series of creep measurements under three relative humidities and obtaining master creep curves from these curves at 20°C, 65 per cent RH. Discovers that the compression phenomena for wool, which absorbed the moisture from a drying state, were different from those obtained from desorption. Reveals that crimpy fibre assembly showed more volume change and better recovery than uncrimpy fibre assembly at high water content. Notes that the fibre crimp is also an important parameter for wool fibre assembly at high water content as well as standard condition.

Details

International Journal of Clothing Science and Technology, vol. 8 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 December 2020

Yu Chen, Irina Tatiana Garces, Tian Tang and Cagri Ayranci

The purpose of this paper is to demonstrate an innovative, fast and low-cost method to fabricate customized stents using polyurethane-based shape memory polymers composite…

Abstract

Purpose

The purpose of this paper is to demonstrate an innovative, fast and low-cost method to fabricate customized stents using polyurethane-based shape memory polymers composite reinforced by cellulose nanocrystal (CNC), achieved by a commercial desktop extrusion-based additive manufacturing (EBAM) device.

Design/methodology/approach

The composite filament for printing the stents was prepared by a two-step melt-compounding extrusion process. Afterward, the stents were produced by a desktop EBAM printer. Thermal characterizations, including thermo-gravimetric analysis (TGA) and modulated differential scanning calorimetry (modulated DSC), were conducted on stent samples and filament samples, respectively. Then the stents were programmed under 45°C. Recovery characterizations, including recovery force and recovery ratio measurement, were conducted under 40°C.

Findings

TGA results showed that the materials were stable under the printing temperature. Modulated DSC results indicated that, with the addition of CNCs, the glass transition temperature of the material dropped slightly from 39.7°C at 0 Wt.% CNC to 34.2°C at 7 Wt.% CNC. The recovery characterization showed that the stents can exert a maximum recovery force of 0.4 N/mm when 7 Wt.% of CNCs were added and the maximum recovery ratio of 35.8% ± 5.1% was found when 4 Wt.% of CNCs were added. The addition of CNC improved both the recovery ratio and the recovery force of the as-prepared stents.

Originality/value

In terms of recovery force, the as-prepared stents out-performed commercially available stents by 30 times. In addition, additive manufacturing offers more flexibility in the design and fabrication of customized cardiovascular stents.

Details

Rapid Prototyping Journal, vol. 27 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 May 2018

Gnanauthayan G., Rengasamy R.S. and Vijayakumar Kothari

This paper aims to deal with the thermal resistance of multilayer nonwovens. The effect of fibre denier, cross-sectional shape and positioning within the layers were analysed with…

Abstract

Purpose

This paper aims to deal with the thermal resistance of multilayer nonwovens. The effect of fibre denier, cross-sectional shape and positioning within the layers were analysed with respect to the thermal resistance. Moreover, effect of compression on thermal resistance of the multilayer nonwoven structure have also be studied.

Design/methodology/approach

The study involves multiple layering of thermal bonded nonwoven webs and the effect of fibre denier and positioning of different nonwovens from the hot plate. To avoid the increase in thermal resistance because of the air gaps between layers, the nonwovens were enclosed within an acrylic frame to compress them to a thickness of 12 mm. Compressional behaviour of the nonwovens were tested at a rate of 5 mm/min with peak compressive load of 50 N. Multilayer nonwoven assemblies were tested for thermal resistance with compressive pressure of 3.5 gf/cm2 and compared with that tested at zero pressure.

Findings

In the study, three-layered nonwoven structure, provided better thermal resistance than their single component counterparts. The structural characteristic of the multilayer nonwovens affected the conductive, convective and the radiative heat transfer. In a multi-layer nonwoven, the top most layer should have the finest fibre as possible. Second preference may be given to the middle and followed by bottom layers in terms of fibre fineness. However, fine solid fibres performed poorly in terms of compression and recovery resulting in poor thermal resistance under compressive load.

Originality/value

The experimental approach of controlling thickness while evaluating the thermal resistance will help in nullify the effect of air gaps between the layer interface, thus focussing on the effect of fibre denier and the positioning of nonwovens. This paper also discusses the unique properties of fine solid fibre and hollow fibres and their role in providing better thermal insulation for extreme cold weather applications.

Details

Research Journal of Textile and Apparel, vol. 22 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 4 April 2016

Huihuang Zhao, Jianzhen Chen, Shibiao Xu, Ying Wang and Zhijun Qiao

The purpose of this paper is to develop a compressive sensing (CS) algorithm for noisy solder joint imagery compression and recovery. A fast gradient-based compressive sensing…

Abstract

Purpose

The purpose of this paper is to develop a compressive sensing (CS) algorithm for noisy solder joint imagery compression and recovery. A fast gradient-based compressive sensing (FGbCS) approach is proposed based on the convex optimization. The proposed algorithm is able to improve performance in terms of peak signal noise ratio (PSNR) and computational cost.

Design/methodology/approach

Unlike traditional CS methods, the authors first transformed a noise solder joint image to a sparse signal by a discrete cosine transform (DCT), so that the reconstruction of noisy solder joint imagery is changed to a convex optimization problem. Then, a so-called gradient-based method is utilized for solving the problem. To improve the method efficiency, the authors assume the problem to be convex with the Lipschitz gradient through the replacement of an iteration parameter by the Lipschitz constant. Moreover, a FGbCS algorithm is proposed to recover the noisy solder joint imagery under different parameters.

Findings

Experiments reveal that the proposed algorithm can achieve better results on PNSR with fewer computational costs than classical algorithms like Orthogonal Matching Pursuit (OMP), Greedy Basis Pursuit (GBP), Subspace Pursuit (SP), Compressive Sampling Matching Pursuit (CoSaMP) and Iterative Re-weighted Least Squares (IRLS). Convergence of the proposed algorithm is with a faster rate O(k*k) instead of O(1/k).

Practical implications

This paper provides a novel methodology for the CS of noisy solder joint imagery, and the proposed algorithm can also be used in other imagery compression and recovery.

Originality/value

According to the CS theory, a sparse or compressible signal can be represented by a fewer number of bases than those required by the Nyquist theorem. The new development might provide some fundamental guidelines for noisy imagery compression and recovering.

1 – 10 of over 1000