Search results

1 – 10 of 988
Article
Publication date: 1 March 2013

M. Nekoeimehr, A.D. Rahmatabadi and R. Rashidi

The purpose of this paper is to analyse the static performance characteristics of lobe journal bearings lubricated with a micropolar fluid, considering effect of non‐circularity…

Abstract

Purpose

The purpose of this paper is to analyse the static performance characteristics of lobe journal bearings lubricated with a micropolar fluid, considering effect of non‐circularity. Number of lobes and their preload value are the non‐circularity parameters considered in the present study. The bearings undertaken for the investigation are two, three and four‐lobe symmetric journal bearings with finite width.

Design/methodology/approach

For this purpose, modified form of Reynolds equation is derived, based on Eringen's micropolar fluid theory and it is solved numerically using finite element method (FEM). The effect of the non‐circularity parameters of bearings on the steady‐state performance characteristics such as load carrying capacity, attitude angle, coefficient of friction and side leakage flow are presented and discussed.

Findings

The results show that the number of lobes and their preload value can influence the performance of lobe bearings. It is seen that, in order to provide certain improvement over simple cylindrical bearings, the non‐circularity parameters of lobe bearings must be chosen correctly. There is no single optimum profile for multi‐lobe bearing application.

Originality/value

Lobe bearings, compared with simple circular bearings, offer several geometric parameters to designers. These parameters must be chosen correctly, so that the requirements of a specific application can be fulfilled.

Details

Industrial Lubrication and Tribology, vol. 65 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 June 2009

J. Sharana Basavaraja, Sathish Sharma and Sathish Jain

The non‐recessed hybrid journal bearings of cylindrical type, when operating at higher rotational speeds can suffer self‐exited vibrations(oil‐whirl Instability), which can cause…

Abstract

Purpose

The non‐recessed hybrid journal bearings of cylindrical type, when operating at higher rotational speeds can suffer self‐exited vibrations(oil‐whirl Instability), which can cause excessive rotor motion causing bearing and sometimes total machine failure. The multi‐lobe journal bearing exhibits better stability as well as a superior capability to suppress oil‐whirl. The paper aims to present a theoretical study pertaining to a two‐lobe hole‐entry hybrid journal bearing by considering the combined influence of surface roughness and journal misalignment on the performance of the bearing.

Design/methodology/approach

The average Reynolds equation governing the flow of lubricant in the clearance space between the rough bearing surfaces together with the equation of flow through a capillary restrictor has been solved using FEM. The bearing performance characteristics have been simulated for a two‐lobe hole‐entry hybrid journal bearing for the various values of offset factor, restrictor design parameter, surface roughness parameter, surface pattern parameter and journal misalignment parameters.

Findings

The two‐lobe hole‐entry hybrid journal bearing system with an offset factor greater than one indicates significant improvement of the order of 15‐25 percent in the values of direct stiffness and direct damping coefficients compared to a circular hole‐entry hybrid journal bearing system. Also the lubricant flow of a two‐lobe hole‐entry hybrid journal bearing is reduced by 25 percent vis‐à‐vis circular bearing.

Originality/value

The present work is original of its kind, in case of two‐lobe hole‐entry hybrid journal bearing. The results are quite useful for the bearing designer.

Details

Industrial Lubrication and Tribology, vol. 61 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 31 December 2020

Kapil Bhardwaj and Mayank Srivastava

This paper aims to develop a mathematical model for four-lobe memristor (FLM) element. The four-lobe memristive behaviour can be used in realization of hyperchaotic oscillators…

Abstract

Purpose

This paper aims to develop a mathematical model for four-lobe memristor (FLM) element. The four-lobe memristive behaviour can be used in realization of hyperchaotic oscillators and implementation of multi-bit memories. For verification of the developed mathematical framework, two FLM circuit emulators have been presented using VDCC and IC LM13700, respectively.

Design/methodology/approach

A mathematical model for FLM has been developed in which, the condition for the existence of symmetrical four lobes, instances and coordinates of the end points of lobes has been derived and presented. Using this mathematical framework, a FLM emulator based on VDCC has been developed. To validate the possibility of practical implementation of FLM concept, an IC LM13700-based circuit has also been developed. The workability of VDCC based circuit has been verified by running simulations in PSPICE environment using CMOS VDCC model. Similarly, the behaviour of LM13700 IC-based circuit has been confirmed by SPICE model of LM13700 IC.

Findings

It has been shown mathematically that under certain conditions, third-order flux dependent equation of memductance can be used to generate four lobes on the transient v-i plane. Also, two FLM emulators without using any voltage multiplier circuit/IC have been reported.

Originality/value

From the best knowledge of the authors, there are no such FLM emulators that have been reported in literature so far, which operates at practical operating frequencies.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 20 May 2020

Roy V. Paul, Kriparaj K.G. and Tide P.S.

The purpose of this study is to investigate the aerodynamic characteristics of subsonic jet emanating from corrugated lobed nozzle.

161

Abstract

Purpose

The purpose of this study is to investigate the aerodynamic characteristics of subsonic jet emanating from corrugated lobed nozzle.

Design/methodology/approach

Numerical simulations of subsonic turbulent jets from corrugated lobed nozzles using shear stress transport k-ω turbulence model have been carried out. The analysis was carried out by varying parameters such as lobe length, lobe penetration and lobe count at a Mach number of 0.75. The numerical predictions of axial and radial variation of the mean axial velocity, uu′ ¯ and vv′ ¯ have been compared with experimental results of conventional round and chevron nozzles reported in the literature.

Findings

The centreline velocity at the exit of the corrugated lobed nozzle was found to be lower than the velocity at the outer edges of the nozzle. The predicted potential core length is lesser than the experimental results of the conventional round nozzle and hence the decay in centreline velocity is faster. The centreline velocity increases with the increase in lobe length and becomes more uniform at the exit. The potential core length increases with the increase in lobe count and decreases with the increase in lobe penetration. The turbulent kinetic energy region is narrower with early appearance of a stronger peak for higher lobe penetration. The centreline velocity degrades much faster in the corrugated nozzle than the chevron nozzle and the peak value of Reynolds stress appears in the vicinity of the nozzle exit.

Practical implications

The corrugated lobed nozzles are used for enhancing mixing without the thrust penalty inducing better acoustic benefits.

Originality/value

The prominent features of the corrugated lobed nozzle were obtained from the extensive study of variation of flow characteristics for different lobe parameters after making comparison with round and chevron nozzle, which paved the way to the utilization of these nozzles for various applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 March 2021

Ravi Tej D, Sri Kavya Ch K and Sarat K. Kotamraju

The purpose of this paper is to improve energy efficiency and further reduction of side lobe level the algorithm proposed is firework algorithm. In this paper, roused by the…

Abstract

Purpose

The purpose of this paper is to improve energy efficiency and further reduction of side lobe level the algorithm proposed is firework algorithm. In this paper, roused by the eminent swarm conduct of firecrackers, a novel multitude insight calculation called fireworks algorithm (FA) is proposed for work enhancement. The FA is introduced and actualized by mimicking the blast procedure of firecrackers. In the FA, two blast (search) forms are utilized and systems for keeping decent variety of sparkles are likewise all around planned. To approve the presentation of the proposed FA, correlation tests were led on nine benchmark test capacities among the FA, the standard PSO (SPSO) and the clonal PSO (CPSO).

Design/methodology/approach

The antenna arrays are used to improve the capacity and spectral efficiency of wireless communication system. The latest communication systems use the antenna array technology to improve the spectral efficiency, fill rate and the energy efficiency of the communication system can be enhanced. One of the most important properties of antenna array is beam pattern. A directional main lobe with low side lobe level (SLL) of the beam pattern will reduce the interference and enhance the quality of communication. The classical methods for reducing the side lobe level are differential evolution algorithm and PSO algorithm. In this paper, roused by the eminent swarm conduct of firecrackers, a novel multitude insight calculation called fireworks algorithm (FA) is proposed for work enhancement. The FA is introduced and actualized by mimicking the blast procedure of firecrackers. In the FA, two blast (search) forms are utilized and systems for keeping decent variety of sparkles are likewise all around planned. To approve the presentation of the proposed FA, correlation tests were led on nine benchmark test capacities among the FA, the standard PSO (SPSO) and the clonal PSO (CPSO). It is demonstrated that the FA plainly beats the SPSO and the CPSO in both enhancement exactness and combination speed. The results convey that the side lobe level is reduced to −34.78dB and fill rate is increased to 78.53.

Findings

Samples including 16-element LAAs are conducted to verify the optimization performances of the SLL reductions. Simulation results show that the SLLs can be effectively reduced by FA. Moreover, compared with other benchmark algorithms, fireworks has a better performance in terms of the accuracy, the convergence rate and the stability.

Research limitations/implications

With the use of algorithms radiation is prone to noise one way or other. Even with any optimizations we cannot expect radiation to be ideal. Power dissipation or electro magnetic interference is bound to happen, but the use of optimization algorithms tries to reduce them to the extent that is possible.

Practical implications

16-element linear antenna array is available with latest versions of Matlab.

Social implications

The latest technologies and emerging developments in the field of communication and with exponential growth in users the capacity of communication system has bottlenecks. The antenna arrays are used to improve the capacity and spectral efficiency of wireless communication system. The latest communication systems use the antenna array technology which is to improve the spectral efficiency, fill rate and the energy efficiency of the communication system can be enhanced.

Originality/value

By using FA, the fill rate is increased to 78.53 and the side lobe level is reduced to 35dB, when compared with the bench mark algorithms.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 14 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 13 November 2017

Chandra B. Khatri and Satish C. Sharma

The aim of the present paper is to study the combined influence of textured surface and micropolar lubricant behaviour on the performance of two-lobe hole-entry hybrid journal…

Abstract

Purpose

The aim of the present paper is to study the combined influence of textured surface and micropolar lubricant behaviour on the performance of two-lobe hole-entry hybrid journal bearing system. The bearing performance parameters of the textured circular/two-lobe hole-entry hybrid journal bearing system have been computed against the constant vertical external load supported by the bearing.

Design/methodology/approach

In this work, Eringen’s micropolar fluid theory has been used to derive the governing Reynolds equation. The consequent solution of the governing Reynolds equation has been obtained by using finite element method (FEM) numerical technique.

Findings

The present study indicates that the use of the textured surface, two-lobe profile of bearing and micropolar lubricant, significantly enhances the bearing performance as compared to non-textured circular journal bearing.

Originality/value

The present study concerning the influence of surface texturing on the behaviour of the two-lobe hole-entry hybrid journal bearing lubricated with micropolar lubricant is original. The theoretically simulated results of the present study will be useful to design an efficient journal bearing system.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 April 2012

Satish C. Sharma, Vikas M. Phalle and S.C. Jain

Noncircular journal bearings are used in industry because of their simplicity, efficiency and low cost. During the life time of a machine, these are required to be operated over a…

Abstract

Purpose

Noncircular journal bearings are used in industry because of their simplicity, efficiency and low cost. During the life time of a machine, these are required to be operated over a number of years and are submitted to several stops and starts. As a result, the bush becomes progressively worn out and the bearing performance changes. The purpose of this paper is to study theoretically the influence of wear on the performance of a non‐circular 2‐lobe four‐pocket multirecess hybrid journal bearing system.

Design/methodology/approach

The Reynolds equation governing the flow of lubricant in the clearance space of a non‐circular 2‐lobe multirecess worn hybrid journal bearing system has been solved using FEM along with appropriate boundary conditions. The defects caused by wear are centered on the load line and range from 10 per cent to 50 per cent of the bearing radial clearance.

Findings

The numerically simulated results based on a Newtonian lubricant and the steady state flow field system have been presented in terms of maximum fluid film pressure, minimum fluid film thickness, lubricant flow rate, direct fluid film stiffness and damping coefficients and stability threshold speed margin. The paper demonstrates that, for the bearing configurations studied, the bearing behavior is clearly affected by wear. The numerically simulated results indicate that for an offset factor of δ=1.2, the value of min reduces by 21.21 per cent at δ¯w=0.5.

Originality/value

The presented results have valuable data in case of 2‐lobe four pocket hybrid journal bearing compensated with constant flow valve restrictor. The paper outcomes are sure to be of interest for researchers and useful for bearing designers.

Details

Industrial Lubrication and Tribology, vol. 64 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 March 2014

Bin Huang, Le-qin Wang and Jia Guo

– The purpose of this paper is to study the different performance of circular, two-lobe and elliptical journal bearings by TEHD analysis.

Abstract

Purpose

The purpose of this paper is to study the different performance of circular, two-lobe and elliptical journal bearings by TEHD analysis.

Design/methodology/approach

A complete 3D TEHD model of journal bearings is set up and applied to the lubricant performance calculation of the conventional circular, two-lobe and elliptical journal bearings. The finite difference method is employed to solve the THD model, and the thermo-elasto deformations on the pad are obtained by the finite element software ANSYS11.0. The data transfer between the THD model and ANSYS11.0 is carried out automatically by Interface Program.

Findings

It is found that under the identical geometric parameters and operating condition, the circular journal bearing possesses the greatest magnitude of the maximum oil film pressure, the two-lobe one takes the second place and the elliptical one possesses the smallest magnitude. The thermo-elasto deformations on the pad is the same order of magnitude with the minimum film thickness.

Practical implications

A complete 3D TEHD model made up of the THD model and ANSYS11.0 can be applied on journal bearings in practice applications.

Originality/value

This paper set up a complete 3D TEHD model that is in common use for the lubricant performance analysis of circular and non-circular journal bearings.

Details

Industrial Lubrication and Tribology, vol. 66 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 February 2024

Xiang Shen, Kai Zeng, Liming Yang, Chengyong Zhu and Laurent Dala

This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of…

Abstract

Purpose

This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of upward and downward lobe patterns, different lobe widths and deflection angles on flow separation, aiming for a deeper understanding of the flow physics behind the passive flow control system.

Design/methodology/approach

Large Eddy Simulation and Reynolds-averaged Navier–Stokes were used to evaluate the results of the study. The research explores the impact of upward and downward patterns of lobes on flow separation through the effects of different lobe widths and deflection angles. Numerical methods are used to analyse the behaviour of transonic flow over BFS and compared it to existing experimental results.

Findings

The square-lobed trailing edges significantly enhance the reduction of mean reattachment length by up to 80%. At Ma = 0.8, the up-downward configuration demonstrates increased effectiveness in reducing the root mean square of pressure fluctuations at a proximity of 5-step height in the wake region, with a reduction of 50%, while the flat-downward configuration proves to be more efficient in reducing the root mean square of pressure fluctuations at a proximity of 1-step height in the near wake region, achieving a reduction of 71%. Furthermore, the study shows that the up-downward configuration triggers early spanwise velocity fluctuations, whereas the standalone flat-downward configuration displays less intense crosswise velocity fluctuations within the wake region.

Practical implications

The findings demonstrate the effectiveness of square-lobed trailing edges as passive control techniques, showing significant implications for improving efficiency, performance and safety of the design in aerospace and industrial systems.

Originality/value

This paper demonstrates that the square-lobed trailing edges are effective in reducing the mean reattachment length and pressure fluctuations in transonic conditions. The study evaluates the efficacy of different configurations, deflection angles and lobe widths on flow and provides insights into the flow physics of passive flow control systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 September 2010

Satish Jain, Satish Sharma, J. Sharana Basavaraja and Prashant Kushare

In recent years, researchers have focused a great deal of attention on multirecess hybrid journal bearing systems. The non‐circular journal bearings are widely used in industry on…

Abstract

Purpose

In recent years, researchers have focused a great deal of attention on multirecess hybrid journal bearing systems. The non‐circular journal bearings are widely used in industry on account of their better stability, simplicity, efficiency and low cost. The purpose of this paper is to present a theoretical investigation into the performance of a two‐lobe multirecess hybrid journal bearing system.

Design/methodology/approach

The Reynold's equation governing the lubricant flow in the clearance space between the journal and bearing together with restrictor flow equations has been solved using finite element method. The bearing static and dynamic performance characteristics have been presented for the various values of the offset factors (0.75, 1, 1.25 and 1.50) for the hybrid mode of operation of the journal bearing system compensated by capillary and orifice restrictors for the commonly used bearing operating and geometric parameters. The offset of the journal has been accounted for by defining a non‐dimensional factor called offset factor delta.

Findings

The numerically simulated results indicate that a two‐lobe four recessed hybrid journal bearing provides a better performance than the corresponding similar circular recessed journal bearing system. The study further reveals that in order to get an improved performance of a two‐lobe four recessed journal bearing, a proper selection of bearing offset factors along with type of restrictor (capillary or orifice) is essential.

Originality/value

The results presented in this paper are useful for bearing designers.

Details

Industrial Lubrication and Tribology, vol. 62 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 988