Search results

1 – 10 of over 1000
Article
Publication date: 1 June 2004

Jessica Gullbrand

Largeeddy simulation (LES) of a turbulent channel flow is performed using different subfilter‐scale (SFS) models and test filter functions. The SFS models used are the dynamic…

Abstract

Largeeddy simulation (LES) of a turbulent channel flow is performed using different subfilter‐scale (SFS) models and test filter functions. The SFS models used are the dynamic Smagorinsky model (DSM) and the dynamic mixed model (DMM). The DMM is a linear combination between the scale‐similarity model and the DSM. The test filter functions investigated are the sharp cut‐off (in spectral space) and smooth filter that is commutative up to fourth‐order. The filters are applied either in the homogeneous directions or in all three spatial directions. The governing equations are discretized using a fourth‐order energy‐conserving finite‐difference scheme. The influence from the test filter function and the SFS model on the LES results are investigated and the effect of two‐dimensional versus three‐dimensional test filtering are investigated. The study shows that the combination of SFS model and filter function highly influences the computational results; even the effect on the zeroth‐order moment is large.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 14 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 October 2018

Salman Arshad, Bo Kong, Alan Kerstein and Michael Oevermann

The purpose of this numerical work is to present and test a new approach for large-scale scalar advection (splicing) in large eddy simulations (LES) that use the linear eddy

Abstract

Purpose

The purpose of this numerical work is to present and test a new approach for large-scale scalar advection (splicing) in large eddy simulations (LES) that use the linear eddy sub-grid mixing model (LEM) called the LES-LEM.

Design/methodology/approach

The new splicing strategy is based on an ordered flux of spliced LEM segments. The principle is that low-flux segments have less momentum than high-flux segments and, therefore, are displaced less than high-flux segments. This strategy affects the order of both inflowing and outflowing LEM segments of an LES cell. The new splicing approach is implemented in a pressure-based fluid solver and tested by simulation of passive scalar transport in a co-flowing turbulent rectangular jet, instead of combustion simulation, to perform an isolated investigation of splicing. Comparison of the new splicing with a previous splicing approach is also done.

Findings

The simulation results show that the velocity statistics and passive scalar mixing are correctly predicted using the new splicing approach for the LES-LEM. It is argued that modeling of large-scale advection in the LES-LEM via splicing is reasonable, and the new splicing approach potentially captures the physics better than the old approach. The standard LES sub-grid mixing models do not represent turbulent mixing in a proper way because they do not adequately represent molecular diffusion processes and counter gradient effects. Scalar mixing in turbulent flow consists of two different processes, i.e. turbulent mixing that increases the interface between unmixed species and molecular diffusion. It is crucial to model these two processes individually at their respective time scales. The LEM explicitly includes both of these processes and has been used successfully as a sub-grid scalar mixing model (McMurtry et al., 1992; Sone and Menon, 2003). Here, the turbulent mixing capabilities of the LES-LEM with a modified splicing treatment are examined.

Originality/value

The splicing strategy proposed for the LES-LEM is original and has not been investigated before. Also, it is the first LES-LEM implementation using unstructured grids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 August 2019

Mohammad Haji Mohammadi and Joshua R. Brinkerhoff

Turbomachinery, including pumps, are mainly designed to extract/produce energy from/to the flow. A major challenge in the numerical simulation of turbomachinery is the inlet flow…

Abstract

Purpose

Turbomachinery, including pumps, are mainly designed to extract/produce energy from/to the flow. A major challenge in the numerical simulation of turbomachinery is the inlet flow rate, which is routinely treated as a known boundary condition for simulation purposes but is properly a dependent output of the solution. As a consequence, the results from numerical simulations may be erroneous due to the incorrect specification of the discharge flow rate. Moreover, the transient behavior of the pumps in their initial states of startup and final states of shutoff phases has not been studied numerically. This paper aims to develop a coupled procedure for calculating the transient inlet flow rate as a part of the solution via application of the control volume method for linear momentum. Large eddy simulation of a four-blade axial hydraulic pump is carried out to calculate the forces at every time step. The sharp interface immersed boundary method is used to resolve the flow around the complex geometry of the propeller, stator and the pipe casing. The effect of the spurious pressure fluctuations, inherent in the sharp interface immersed boundary method, is damped by local time-averaging of the forces. The developed code is validated by comparing the steady-state volumetric flow rate with the experimental data provided by the pump manufacturer. The instantaneous and time-averaged flow fields are also studied to reveal the flow pattern and turbulence characteristics in the pump flow field.

Design/methodology/approach

The authors use control volume analysis for linear momentum to simulate the discharge rate as part of the solution in a large eddy simulation of an axial hydraulic pump. The linear momentum balance equation is used to update the inlet flow rate. The sharp interface immersed boundary method with dynamic Smagorinsky sub-grid stress model and a proper wall model is used.

Findings

The steady-state volumetric flow rate has been computed and validated by comparing to the flow rate specified by the manufacturer at the simulation conditions, which shows a promising result. The instantaneous and time averaged flow fields are also studied to reveal the flow pattern and turbulence characteristics in the pump flow field.

Originality/value

An approach is proposed for computing the volumetric flow rate as a coupled part of the flow solution, enabling the simulation of turbomachinery at all phases, including the startup/shutdown phase. To the best of the authors’ knowledge, this is the first large eddy simulation of a hydraulic pump to calculate the transient inlet flow rate as a part of the solution rather than specifying it as a fixed boundary condition. The method serves as a numerical framework for simulating problems incorporating complex shapes with moving/stationary parts at all regimes including the transient start-up and shut-down phases.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 February 2017

Alain Fossi and Alain DeChamplain

Safety improvement and pollutant reduction in many practical combustion systems and especially in aero-gas turbine engines require an adequate understanding of flame ignition and…

Abstract

Purpose

Safety improvement and pollutant reduction in many practical combustion systems and especially in aero-gas turbine engines require an adequate understanding of flame ignition and stabilization mechanisms. Improved software and hardware have opened up greater possibilities for translating basic knowledge and the results of experiments into better designs. The present study deals with the large eddy simulation (LES) of an ignition sequence in a conical shaped bluff-body stabilized burner involving a turbulent non-premixed flame. The purpose of this paper is to investigate the impact of spark location on ignition success. Particular attention is paid to the ease of handling of the numerical tool, the computational cost and the accuracy of the results.

Design/methodology/approach

The discrete particle ignition kernel (DPIK) model is used to capture the ignition kernel dynamics in its early stage of growth after the breakdown period. The ignition model is coupled with two combustion models based on the mixture fraction-progress variable formulation. An infinitely fast chemistry assumption is first done, and the turbulent fluctuations of the progress variable are captured with a bimodal probability density function (PDF) in the line of the Bray–Moss–Libby (BML) model. Thereafter, a finite rate chemistry assumption is considered through the flamelet-generated manifold (FGM) method. In these two assumptions, the classical beta-PDF is used to model the temporal fluctuations of the mixture fraction in the turbulent flow. To model subgrid scale stresses and residual scalars fluxes, the wall-adapting local eddy (WALE) and the eddy diffusivity models are, respectively, used under the low-Mach number assumption.

Findings

Numerical results of velocity and mixing fields, as well as the ignition sequences, are validated through a comparison with their experimental counterparts. It is found that by coupling the DPIK model with each of the two combustion models implemented in a LES-based solver, the ignition event is reasonably predicted with further improvements provided by the finite rate chemistry assumption. Finally, the spark locations most likely to lead to a complete ignition of the burner are found to be around the shear layer delimiting the central recirculation zone, owing to the presence of a mixture within flammability limits.

Research limitations/implications

Some discrepancies are found in the radial profiles of the radial velocity and consequently in those of the mixture fraction, owing to a mismatch of the radial velocity at the inlet section of the computational domain. Also, unlike FGM methods, the BML model predicts the overall ignition earlier than suggested by the experiment; this may be related to the overestimation of the reaction rate, especially in the zones such as flame holder wakes which feature high strain rate due to fuel-air mixing.

Practical implications

This work is adding a contribution for ignition modeling, which is a crucial issue in various combustion systems and especially in aircraft engines. The exclusive use of a commercial computational fluid dynamics (CFD) code widely used by combustion system manufacturers allows a direct application of this simulation approach to other configurations while keeping computing costs at an affordable level.

Originality/value

This study provides a robust and simple way to address some ignition issues in various spark ignition-based engines, namely, the optimization of engines ignition with affordable computational costs. Based on the promising results obtained in the current work, it would be relevant to extend this simulation approach to spray combustion that is required for aircraft engines because of storage volume constraints. From this standpoint, the simulation approach formulated in the present work is useful to engineers interested in optimizing the engines ignition at the design stage.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 October 2012

Yang Zhengjun and Wang Fujun

Large eddy simulation (LES) is widely used in prediction of turbulent flow. The purpose of this paper is to propose a new dynamic mixed nonlinear subgrid‐scale (SGS) model (DMNM)…

Abstract

Purpose

Large eddy simulation (LES) is widely used in prediction of turbulent flow. The purpose of this paper is to propose a new dynamic mixed nonlinear subgrid‐scale (SGS) model (DMNM), in order to improve LES precision of complex turbulent flow, such as flow including separation or rotation.

Design/methodology/approach

The SGS stress in DMNM consists of scale‐similarity part and eddy‐viscosity part. The scale‐similarity part is used to describe the energy transfer of scales that are close to the cut‐off explicitly. The eddy‐viscosity part represents energy transfer of the other scales between smaller than grid‐filter size and larger than grid‐filter size. The model is demonstrated through two examples; one is channel flow and another is surface‐mounted cube flow. The computed results are compared with prior experimental data, and the behavior of DMNM is analyzed.

Findings

The proposed model has the following characteristics. First, DMNM exhibits significant flexibility in self‐calibration of the model coefficients. Second, it does not require alignment of the principal axes of the SGS stress tensor and the resolved strain rate tensor. Third, since both the rotating part and scale‐similarity part are considered in the new model, flow with rotation and separation is easily simulated. Compared with the prior experimental data, DMNM gives more accurate results in both examples.

Originality/value

The SGS model DMNM proposed in the paper could capture the detail vortex characteristics more accurately. It has the advantage in simulation of complex flow, including more separations.

Details

Engineering Computations, vol. 29 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 June 2016

Jianying Jiao and Ye Zhang

The purpose of this paper is to propose three modified subgrid-scale (SGS) eddy-viscosity models to improve their original eddy-viscosity models (the Smagorinsky model (SM), the…

Abstract

Purpose

The purpose of this paper is to propose three modified subgrid-scale (SGS) eddy-viscosity models to improve their original eddy-viscosity models (the Smagorinsky model (SM), the mixed-scale model (MSM), and the wall-adapted local eddy-viscosity model (WALE)) in the simulation of turbulent flows in near-wall region.

Design/methodology/approach

The subgrid viscosity is related to the norm of strain rate tensor of the smallest resolved scales, instead of the norm of the resolved strain rate tensor of the large scales.

Findings

All the SGS viscosity of the modified eddy-viscosity models (small-large model, modified MSM, and modified WALE) is closer to y+3 behavior than those of the original eddy-viscosity models (SM, MSM, and WALE) near the wall.

Originality/value

The norm of strain rate tensor of the smallest scales used in eddy-viscosity models, instead of the norm of strain rate tensor, makes the eddy viscosity in near-wall region approach to zero in a physical sense.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 May 2016

Zhou Jiang, Zuoli Xiao, Yipeng Shi and Shiyi Chen

The knowledge about the heat transfer and flow field in the ribbed internal passage is particularly important in industrial and engineering applications. The purpose of this paper…

212

Abstract

Purpose

The knowledge about the heat transfer and flow field in the ribbed internal passage is particularly important in industrial and engineering applications. The purpose of this paper is to identify and analyze the performance of the constrained large-eddy simulation (CLES) method in predicting the fully developed turbulent flow and heat transfer in a stationary periodic square duct with two-side ribbed walls.

Design/methodology/approach

The rib height-to-duct hydraulic diameter ratio is 0.1 and the rib pitch-to-height ratio is 9. The bulk Reynolds number is set to 30,000, and the bulk Mach number of the flow is chosen as 0.1 in order to keep the flow almost incompressible. The CLES calculated results are thoroughly assessed in comparison with the detached-eddy simulation (DES) and traditional large-eddy simulation (LES) methods in the light of the experimentally measured data.

Findings

It is manifested that the CLES approach can predict both aerodynamic and thermodynamic quantities more accurately than the DES and traditional LES methods.

Originality/value

This is the first time for the CLES method to be applied to simulation of heat and fluid flow in this widely used geometry.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 February 2021

Konghua Yang, Chunbao Liu, Jing Li and Jiawei Xiong

The flow phenomenon of particle image velocimetry has revealed the transition process of the complex multi-scale vortex between the boundary layer and mainstream region…

Abstract

Purpose

The flow phenomenon of particle image velocimetry has revealed the transition process of the complex multi-scale vortex between the boundary layer and mainstream region. Nonetheless, present computational fluid dynamics methods inadequately distinguish the discernable flows in detail. A multi-physical field coupling model, which was applied in rotor-stator fluid machinery (Umavathi, 2015; Syawitri et al., 2020), was put forward to ensure the identification of multi-scale vortexes and the improvement of performance prediction in torque converter.

Design/methodology/approach

A newly-developed multi-physical field simulation framework that coupled the scale-resolving simulation method with a dynamic modified viscosity coefficient was proposed to comparatively investigate the influence of energy exchange on thermal and flow characteristics and the description of the flow field in detail.

Findings

Regardless of whether quantitative or qualitative, its description ability on turbulence statistics, pressure-streamline, vortex structure and eddy viscosity ratio were visually experimentally and numerically analyzed. The results revealed that the modification of transmission medium viscous can identify flows more exactly between the viscous sublayer and outer boundary layer. Compared with RANS and large eddy simulation, a stress-blended eddy simulation model with a dynamic modified viscosity coefficient, which was further used to achieve blending on the stress level, can effectively solve the calculating problem of the transition region between the near-wall boundary layer and mainstream region.

Research limitations/implications

This indeed provides an excellent description of the transient flow field and vortex structure in different physical flow states. Furthermore, the experimental data has proven that the maximum error of the external performance prediction was less than 4%.

Originality/value

An improved model was applied to simulate and analyze the flow mechanism through the evolution of vortex structures in a working chamber, to deepen the designer with a fundamental understanding on how to reduce flow losses and flow non-uniformity in manufacturing.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 January 2017

Seyi F. Olatoyinbo, Sarma L. Rani and Abdelkader Frendi

The purpose of this study is to investigate the accuracy and applicability of the Flowfield Dependent Variation (FDV) method for large-eddy simulations (LES) of decaying isotropic…

Abstract

Purpose

The purpose of this study is to investigate the accuracy and applicability of the Flowfield Dependent Variation (FDV) method for large-eddy simulations (LES) of decaying isotropic turbulence.

Design/methodology/approach

In an earlier paper, the FDV method was successfully demonstrated for simulations of laminar flows with speeds varying from low subsonic to high supersonic Mach numbers. In the current study, the FDV method, implemented in a finite element framework, is used to perform LESs of decaying isotropic turbulence. The FDV method is fundamentally derived from the Lax–Wendroff Scheme (LWS) by replacing the explicit time derivatives in LWS with a weighted combination of explicit and implicit time derivatives. The increased implicitness and the inherent numerical dissipation of FDV contribute to the scheme’s numerical stability and monotonicity. Understanding the role of numerical dissipation that is inherent to the FDV method is essential for the maturation of FDV into a robust scheme for LES of turbulent flows. Accordingly, three types of LES of decaying isotropic turbulence were performed. The first two types of LES utilized explicit subgrid scale (SGS) models, namely, the constant-coefficient Smagorinsky and dynamic Smagorinsky models. In the third, no explicit SGS model was employed; instead, the numerical dissipation inherent to FDV was used to emulate the role played by explicit SGS models. Such an approach is commonly known as Implicit LES (ILES). A new formulation was also developed for quantifying the FDV numerical viscosity that principally arises from the convective terms of the filtered Navier–Stokes equations.

Findings

The temporal variation of the turbulent kinetic energy and enstrophy and the energy spectra are presented and analyzed. At all grid resolutions, the temporal profiles of kinetic energy showed good agreement with t(−1.43) theoretical scaling in the fully developed turbulent flow regime, where t represents time. The energy spectra also showed reasonable agreement with the Kolmogorov’s k(−5/3) power law in the inertial subrange, with the spectra moving closer to the Kolmogorov scaling at higher-grid resolutions. The intrinsic numerical viscosity and the dissipation rate of the FDV scheme are quantified, both in physical and spectral spaces, and compared with those of the two SGS LES runs. Furthermore, at a finite number of flow realizations, the numerical viscosities of FDV and of the Streamline Upwind/Petrov–Galerkin (SUPG) finite element method are compared. In the initial stages of turbulence development, all three LES cases have similar viscosities. But, once the turbulence is fully developed, implicit LES is less dissipative compared to the two SGS LES runs. It was also observed that the SUPG method is significantly more dissipative than the three LES approaches.

Research limitations/implications

Just as any computational method, the limitations are based on the available computational resources.

Practical implications

Solving problems involving turbulent flows is by far the biggest challenge facing engineers and scientists in the twenty-first century, this is the road that the authors have embarked upon in this paper and the road ahead of is very long.

Social implications

Understanding turbulence is a very lofty goal and a challenging one as well; however, if the authors succeed, the rewards are limitless.

Originality/value

The derivation of an explicit expression for the numerical viscosity tensor of FDV is an important contribution of this study, and is a crucial step forward in elucidating the fundamental properties of the FDV method. The comparison of viscosities for the three LES cases and the SUPG method has important implications for the application of ILES approach for turbulent flow simulations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 April 2013

Abdelraheem M. Aly, Mitsuteru Asai and Yoshimi Sonda

The purpose of this paper is to show how a surface tension model and an eddy viscosity based on the Smagorinsky sub‐grid scale model, which belongs to the LargeEddy Simulation

Abstract

Purpose

The purpose of this paper is to show how a surface tension model and an eddy viscosity based on the Smagorinsky sub‐grid scale model, which belongs to the LargeEddy Simulation (LES) theory for turbulent flow, have been introduced into ISPH (Incompressible smoothed particle hydrodynamics) method. In addition, a small modification in the source term of pressure Poisson equation has been introduced as a stabilizer for robust simulations. This stabilization generates a smoothed pressure distribution and keeps the total volume of fluid, and it is analogous to the recent modification in MPS.

Design/methodology/approach

The surface tension force in free surface flow is evaluated without a direct modeling of surrounding air for decreasing computational costs. The proposed model was validated by calculating the surface tension force in the free surface interface for a cubic‐droplet under null‐gravity and the milk crown problem with different resolution models. Finally, effects of the eddy viscosity have been discussed with a fluid‐fluid interaction simulation.

Findings

From the numerical tests, the surface tension model can handle free surface tension problems including high curvature without special treatments. The eddy viscosity has clear effects in adjusting the splashes and reduces the deformation of free surface in the interaction. Finally, the proposed stabilization appeared in the source term of pressure Poisson equation has an important role in the simulation to keep the total volume of fluid.

Originality/value

An incompressible smoothed particle hydrodynamics is developed to simulate milk crown problem using a surface tension model and the eddy viscosity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 1000