Search results

1 – 10 of 112
Article
Publication date: 14 August 2023

Sajjad Habashi Youvalari, Arash Olianezhad and Saeid Afrang

The purpose of this paper is to design and simulate a piezoelectric micropump using microelectromechanical systems technology for drug delivery applications.

Abstract

Purpose

The purpose of this paper is to design and simulate a piezoelectric micropump using microelectromechanical systems technology for drug delivery applications.

Design/methodology/approach

Two piezoelectric actuators are used to actuate and bend the diaphragms in the proposed structure. In this micropump, the liquid flow is rectified by two silicon check valves.

Findings

The use of two piezoelectric transducer (PZT) actuators in the parallel mod not only reduces dead volume but also increases stroke volume as well. In addition to increasing the flow rate, this phenomenon enhances the operation of the micropump to have self-priming as smoothly as possible.

Originality/value

This actuating method results in a 22% increase in flow rate and compression ratio, as well as a 15% reduction in function voltage. The fluid-solid interaction is simulated using COMSOL Multiphysics 5.3a.

Details

Sensor Review, vol. 43 no. 5/6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 14 March 2023

Roosefert Mohan, J. Preetha Roselyn and R. Annie Uthra

The artificial intelligence (AI) based total productive maintenance (TPM) condition based maintenance (CBM) approach through Industry 4.0 transformation can well predict the…

Abstract

Purpose

The artificial intelligence (AI) based total productive maintenance (TPM) condition based maintenance (CBM) approach through Industry 4.0 transformation can well predict the breakdown in advance to eliminate breakdown.

Design/methodology/approach

Meeting the customer requirement as per the delivery schedule with the existing resources are always a big challenge in industries. Any catastrophic breakdown in the equipment leads to increase in production loss, damage to machines, repair cost, time and affects delivery. If these breakdowns are predicted in advance, the breakdown can be addressed before its occurrence and the demand supply chain can be met. TPM is one of the essential operational excellence tool used in industries to utilize the existing resources of a plant in a optimal way. The conventional time based maintenance (TBM) and CBM approach of TPM in Industry 3.0 is time consuming and not accurate enough to achieve zero down time.

Findings

The proposed AI and IIoT based TPM is achieved in a digitalized data oriented platform to monitor and control the health status of the machine which may reduce the catastrophic breakdown by 95% and also improves the quality rate and machine performance rate. Based on the identified key signature parameters related to major breakdown are measured using the sensors, digitalised by programmable logic controller (PLC) and monitored by supervisory control and data acquisition (SCADA) and predicted in server or cloud.

Originality/value

Long short term memory based deep learning network was developed as a regression forecasting model to predict the remaining useful life RUL of the part or assembly and based on the predictions, corrective action has been implemented before the occurrence of breakdown. The reliability and consistency of the proposed approach are validated and horizontally deployed in similar machines to achieve zero downtime.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 4
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 23 February 2024

Guizhi Lyu, Peng Wang, Guohong Li, Feng Lu and Shenglong Dai

The purpose of this paper is to present a wall-climbing robot platform for heavy-load with negative pressure adsorption, which could be equipped with a six-degree of freedom (DOF…

Abstract

Purpose

The purpose of this paper is to present a wall-climbing robot platform for heavy-load with negative pressure adsorption, which could be equipped with a six-degree of freedom (DOF) collaborative robot (Cobot) and detection device for inspecting the overwater part of concrete bridge towers/piers for large bridges.

Design/methodology/approach

By analyzing the shortcomings of existing wall-climbing robots in detecting concrete structures, a wall-climbing mobile manipulator (WCMM), which could be compatible with various detection devices, is proposed for detecting the concrete towers/piers of the Hong Kong-Zhuhai-Macao Bridge. The factors affecting the load capacity are obtained by analyzing the antislip and antioverturning conditions of the wall-climbing robot platform on the wall surface. Design strategies for each part of the structure of the wall-climbing robot are provided based on the influencing factors. By deriving the equivalent adsorption force equation, analyzed the influencing factors of equivalent adsorption force and provided schemes that could enhance the load capacity of the wall-climbing robot.

Findings

The adsorption test verifies the maximum negative pressure that the fan module could provide to the adsorption chamber. The load capacity test verifies it is feasible to achieve the expected bearing requirements of the wall-climbing robot. The motion tests prove that the developed climbing robot vehicle could move freely on the surface of the concrete structure after being equipped with a six-DOF Cobot.

Practical implications

The development of the heavy-load wall-climbing robot enables the Cobot to be installed and equipped on the wall-climbing robot, forming the WCMM, making them compatible with carrying various devices and expanding the application of the wall-climbing robot.

Originality/value

A heavy-load wall-climbing robot using negative pressure adsorption has been developed. The wall-climbing robot platform could carry a six-DOF Cobot, making it compatible with various detection devices for the inspection of concrete structures of large bridges. The WCMM could be expanded to detect the concretes with similar structures. The research and development process of the heavy-load wall-climbing robot could inspire the design of other negative-pressure wall-climbing robots.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Book part
Publication date: 23 May 2023

Ramesh Chandra Das

The values and trends of the credit–deposit (C-D) ratio in countries and the states within them depend on several factors. Two such factors that the present study considers are…

Abstract

The values and trends of the credit–deposit (C-D) ratio in countries and the states within them depend on several factors. Two such factors that the present study considers are the banks’ loanable funds locked under the heads of non-performing assets (NPA) and governments’ securities investments. Increases in the amounts of NPA and securities investments usually lead to a decrease in the allocations of bank credit to real investment purposes, such as industrial, service and agricultural activities and vice versa. On this background, this chapter examines the trends in bank credit in relation to the NPA and securities investments in the states of India and tries to find out the real cause of concern on the falling trends in the C-D ratio in the post-banking reform phase. We may now summarize that the falling C-D ratio or the rising quantity of flight of credit to the real sectors is closely associated with the banks’ investment of extra amount on securities over their statutory limits. This study finds that the NPA ratio at all-India levels is gradually declining while the investments on securities are increasing during the post-reform period. Such a craze behind this investment has an inevitable effect on the magnitude of credit delivery to the commodity-producing sectors. This means that the NPA threat is not a real threat to explain the downward trend of C-D ratio but the magnitude of security investments in both the central and state governments is a real threat and the downward trend of the C-D ratio is the result of this fact. Even though banks are safe in terms of their returns, the scenarios are not good for the rest of the economy as it creels their sustainability.

Details

Growth and Developmental Aspects of Credit Allocation: An inquiry for Leading Countries and the Indian States
Type: Book
ISBN: 978-1-80382-612-7

Keywords

Open Access
Article
Publication date: 31 January 2023

Kristoffer Vandrup Sigsgaard, Julie Krogh Agergaard, Niels Henrik Mortensen, Kasper Barslund Hansen and Jingrui Ge

The study consists of a literature study and a case study. The need for a method via which to handle instruction complexity was identified in both studies. The proposed method was…

Abstract

Purpose

The study consists of a literature study and a case study. The need for a method via which to handle instruction complexity was identified in both studies. The proposed method was developed based on methods from the literature and experience from the case company.

Design/methodology/approach

The purpose of the study presented in this paper is to investigate how linking different maintenance domains in a modular maintenance instruction architecture can help reduce the complexity of maintenance instructions.

Findings

The proposed method combines knowledge from the operational and physical domains to reduce the number of instruction task variants. In a case study, the number of instruction task modules was reduced from 224 to 20, covering 83% of the maintenance performed on emergency shutdown valves.

Originality/value

The study showed that the other methods proposed within the body of maintenance literature mainly focus on the development of modular instructions, without the reduction of complexity and non-value-adding variation observed in the product architecture literature.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 24 October 2023

Calvin Ling, Muhammad Taufik Azahari, Mohamad Aizat Abas and Fei Chong Ng

This paper aims to study the relationship between the ball grid array (BGA) flip-chip underfilling process parameter and its void formation region.

Abstract

Purpose

This paper aims to study the relationship between the ball grid array (BGA) flip-chip underfilling process parameter and its void formation region.

Design/methodology/approach

A set of top-down scanning acoustic microscope images of BGA underfill is collected and void labelled. The labelled images are trained with a convolutional neural network model, and the performance is evaluated. The model is tested with new images, and the void area with its region is analysed with its dispensing parameter.

Findings

All findings were well-validated with reference to the past experimental results regarding dispensing parameters and their quantitative regional formation. As the BGA is non-uniform, 85% of the test samples have void(s) formed in the emptier region. Furthermore, the highest rating factor, valve dispensing pressure with a Gini index of 0.219 and U-type dispensing pattern set of parameters generally form a lower void percentage within the underfilling, although its consistency is difficult to maintain.

Practical implications

This study enabled manufacturers to forecast the void regional formation from its filling parameters and array pattern. The filling pressure, dispensing pattern and BGA relations could provide qualitative insights to understand the void formation region in a flip-chip, enabling the prompt to formulate countermeasures to optimise voiding in a specific area in the underfill.

Originality/value

The void regional formation in a flip-chip underfilling process can be explained quantitatively with indicative parameters such as valve pressure, dispensing pattern and BGA arrangement.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 21 December 2023

Majid Rahi, Ali Ebrahimnejad and Homayun Motameni

Taking into consideration the current human need for agricultural produce such as rice that requires water for growth, the optimal consumption of this valuable liquid is…

Abstract

Purpose

Taking into consideration the current human need for agricultural produce such as rice that requires water for growth, the optimal consumption of this valuable liquid is important. Unfortunately, the traditional use of water by humans for agricultural purposes contradicts the concept of optimal consumption. Therefore, designing and implementing a mechanized irrigation system is of the highest importance. This system includes hardware equipment such as liquid altimeter sensors, valves and pumps which have a failure phenomenon as an integral part, causing faults in the system. Naturally, these faults occur at probable time intervals, and the probability function with exponential distribution is used to simulate this interval. Thus, before the implementation of such high-cost systems, its evaluation is essential during the design phase.

Design/methodology/approach

The proposed approach included two main steps: offline and online. The offline phase included the simulation of the studied system (i.e. the irrigation system of paddy fields) and the acquisition of a data set for training machine learning algorithms such as decision trees to detect, locate (classification) and evaluate faults. In the online phase, C5.0 decision trees trained in the offline phase were used on a stream of data generated by the system.

Findings

The proposed approach is a comprehensive online component-oriented method, which is a combination of supervised machine learning methods to investigate system faults. Each of these methods is considered a component determined by the dimensions and complexity of the case study (to discover, classify and evaluate fault tolerance). These components are placed together in the form of a process framework so that the appropriate method for each component is obtained based on comparison with other machine learning methods. As a result, depending on the conditions under study, the most efficient method is selected in the components. Before the system implementation phase, its reliability is checked by evaluating the predicted faults (in the system design phase). Therefore, this approach avoids the construction of a high-risk system. Compared to existing methods, the proposed approach is more comprehensive and has greater flexibility.

Research limitations/implications

By expanding the dimensions of the problem, the model verification space grows exponentially using automata.

Originality/value

Unlike the existing methods that only examine one or two aspects of fault analysis such as fault detection, classification and fault-tolerance evaluation, this paper proposes a comprehensive process-oriented approach that investigates all three aspects of fault analysis concurrently.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Open Access
Article
Publication date: 31 July 2023

Jingrui Ge, Kristoffer Vandrup Sigsgaard, Bjørn Sørskot Andersen, Niels Henrik Mortensen, Julie Krogh Agergaard and Kasper Barslund Hansen

This paper proposes a progressive, multi-level framework for diagnosing maintenance performance: rapid performance health checks of key performance for different equipment groups…

Abstract

Purpose

This paper proposes a progressive, multi-level framework for diagnosing maintenance performance: rapid performance health checks of key performance for different equipment groups and end-to-end process diagnostics to further locate potential performance issues. A question-based performance evaluation approach is introduced to support the selection and derivation of case-specific indicators based on diagnostic aspects.

Design/methodology/approach

The case research method is used to develop the proposed framework. The generic parts of the framework are built on existing maintenance performance measurement theories through a literature review. In the case study, empirical maintenance data of 196 emergency shutdown valves (ESDVs) are collected over a two-year period to support the development and validation of the proposed approach.

Findings

To improve processes, companies need a separate performance measurement structure. This paper suggests a hierarchical model in four layers (objective, domain, aspect and performance measurement) to facilitate the selection and derivation of indicators, which could potentially reduce management complexity and help prioritize continuous performance improvement. Examples of new indicators are derived from a case study that includes 196 ESDVs at an offshore oil and gas production plant.

Originality/value

Methodological approaches to deriving various performance indicators have rarely been addressed in the maintenance field. The proposed diagnostic framework provides a structured way to identify and locate process performance issues by creating indicators that can bridge generic evaluation aspects and maintenance data. The framework is highly adaptive as data availability functions are used as inputs to generate indicators instead of passively filtering out non-applicable existing indicators.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 31 July 2023

Dinesh Kumar Kushwaha, Dilbagh Panchal and Anish Sachdeva

To meet energy demand and tackle the challenges posed by global warming, Bagasse-based Cogeneration Power Generation (BCPG) plant in sugar mills have tremendous potential due to…

Abstract

Purpose

To meet energy demand and tackle the challenges posed by global warming, Bagasse-based Cogeneration Power Generation (BCPG) plant in sugar mills have tremendous potential due to large-scale supply of renewable fuel called bagasse. To meet this goal, an integrated framework has been proposed for analyzing performance issues of BCPG.

Design/methodology/approach

Intuitionistic Fuzzy Lambda-Tau (IFLT) approach was implemented to compute various reliability parameters. Intuitionistic Fuzzy Failure Mode and Effect Analysis (IF-FMEA) approach has been implemented for studying risk issues results in decrease in plant's availability. Moreover, IF- Technique for Order Performance by Similarity to Ideal Solution (IF-TOPSIS) is implemented to verify accuracy of IF-FMEA approach.

Findings

For membership and non-membership functions, availability decreases to 0.0006% and 0.0020% respectively for spread ±15% to ±30%, and further decreases to 0.0127% and 0.0221% for spread ±30% to ±45%. Under risk assessment failure causes namely Storage tank (ST3), Valve (VL6), Transfer pump (TF8), Deaerator tank (DT11), High pressure heater and economiser (HP15), Boiler drum and super heater (BS22), Forced draft and Secondary air fan (FS25), Air preheater (AH29) and Furnace (FR31) with Intuitionistic Fuzzy Hybrid Weighted Euclidean Distance (IFHWED) based output scores – 0.8988, 0.9752, 0.9400, 0.8988, 0.9267, 1.1131, 1.0039, 0.8185, 1.0604 were identified as the most critical failure causes.

Research limitations/implications

Reliability and risk analysis results derived from IFLT and IF-FMEA approaches respectively, to address the performance issues of BCPG is based on the quantitative and qualitative data collected from the industrial experts and maintenance log book. Moreover, to take care of hesitation in expert's knowledge, IF theory-based concept is incorporated so as to achieve more accuracy in analysis results. Reliability and risk analysis results together will be helpful in analyzing the performance characteristics and diagnosis of critical failure causes, which will minimize frequent failure in BCPG.

Practical implications

The framework will help plant managers to frame optimal maintenance policy in order to enhance the operational aspects of the considered unit. Moreover, the accurate and early detection of failure causes will also help managers to take prudent decision for smooth operation of plant.

Social implications

The results obtained ensure continuous operation of plant by utilizing the bagasse as fuel in boiler and also mitigate the wastages of fuel. If this bagasse (green fuel) is not properly utilized, there remains a dependency on coal-based power plants to meet the power demand. The results obtained are useful for decreasing dependency on coal, and promoting bagasse as the green, and alternative fuel, the emission by burning of these fuels are not harmful for environment and thereby contribute in preventing the environment from harmful effect of GHGs gases.

Originality/value

IFLT approach has been implemented to develop reliability modeling equations of the BCPG unit, and furthermore to compute various reliability parameters for both membership and non-membership function. The ranking results of IF-FMEA are compared to IF-TOPSIS approach. Sensitivity analysis is done to check stability of proposed framework.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 4 August 2023

Argaw Gurmu and Pabasara Wijeratne Mudiyanselage

Most residential building owners often report problems associated with the plumbing systems. If identified at the early stages, plumbing-related defects can be easily repaired…

Abstract

Purpose

Most residential building owners often report problems associated with the plumbing systems. If identified at the early stages, plumbing-related defects can be easily repaired. However, if unnoticed for a long period of time, they could lead to major damages and incur a significant cost to repair. Despite the problems, studies investigating plumbing anomalies and their root causes in residential buildings are limited. This study aims to explore plumbing defects and their potential causes, diagnosis methods and repair techniques in residential buildings.

Design/methodology/approach

This research used data collected through an extensive survey of both academic and grey literature. Through the content analysis, plumbing defects and the associated causes have been identified and presented in tabular format.

Findings

The study investigated the anomalies and causes in the residential plumbing system under five key sub-systems: water supply system; sanitary plumbing system; roof drainage system; heating, ventilation, air conditioning and gas system; and swimming pool. Accordingly, some of the identified plumbing defects include leakages, corrosion, water penetration, slow drainage and cracks. Damaged pipes, faulty equipment and installations are some of the common causes of the anomalies. Visual inspection, hydrostatic pressure test, thermography, high-tech pipe cameras, infrared cameras, leak noise correlators and leak loggers are techniques used for diagnosing anomalies. Reactive, preventive, predictive and reliability-centred maintenance strategies are identified to control or prevent anomalies.

Originality/value

The findings of this research can be used as a useful tool or guideline for contractors, plumbers, facilities managers and building surveyors to identify and rectify plumbing system-related defects in residential buildings.

Details

Facilities , vol. 41 no. 13/14
Type: Research Article
ISSN: 0263-2772

Keywords

1 – 10 of 112