Search results

1 – 10 of 175
Article
Publication date: 2 August 2019

Yongcun Cui, Sier Deng, Haisheng Yang, Wenhu Zhang and Rongjun Niu

The purpose of this paper is to study the influence of the cage dynamic unbalance on the dynamic performances in cylindrical roller bearings.

Abstract

Purpose

The purpose of this paper is to study the influence of the cage dynamic unbalance on the dynamic performances in cylindrical roller bearings.

Design/methodology/approach

The dynamic analysis model which considering cage dynamic unbalance is presented, and the relationship between the cage dynamic unbalance and the cage stability, the cage slip ratio and the cage skew angle is investigated.

Findings

Cage dynamic unbalance has a great effect on the cage stability. The cage dynamic unbalance which in an axial excursion affects the cage characteristics is greater than that only in the radial direction. The cage slip ratio and the cage skew increases with the cage dynamic unbalance, especially with the axial excursion. The non-metal cage is more sensitive to the cage dynamic unbalance than that of the metal cage.

Originality/value

The analytical method and model can be applied by the bearing engineering designers.

Details

Industrial Lubrication and Tribology, vol. 71 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 May 2020

Yanbin Liu and Zhanli Zhang

This study aims to uncover the influencing mechanism of the tilt angles of the cage pocket walls of the high-speed cylindrical roller bearing on the bearing skidding.

Abstract

Purpose

This study aims to uncover the influencing mechanism of the tilt angles of the cage pocket walls of the high-speed cylindrical roller bearing on the bearing skidding.

Design/methodology/approach

A novel cylindrical roller bearing with the beveled cage pockets was proposed. Using the Hertz contact theory and the elastohydrodynamic and hydrodynamic lubrication formulas, the contact models of the bearing were built. Using the multibody kinematics and the Newton–Euler dynamics theory, a dynamics model of the bearing was established. Using the Runge–Kutta integration method, the dynamics simulations and analysis of the bearing were performed.

Findings

The simulation results show that the effects of the tilt angles of the front and rear walls of the pocket on the bearing skidding are remarkable. Under a 5° tilt angle of the front wall of the pocket and a 10° tilt angle of the rear wall, the bearing skidding can be effectively decreased in the rotational speed range of 10,000-70,000 r/min.

Originality/value

In this paper, a novel cylindrical roller bearing with the beveled cage pockets was proposed; a dynamics model of the bearing was established; the influence mechanism of the tilt angles of the front and rear walls of the pocket on the bearing skidding was investigated, which can provide fundamental theory basis for optimizing the pocket.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2020-0035/

Details

Industrial Lubrication and Tribology, vol. 72 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 January 2018

Sier Deng, Jinfang Gu, Yongcun Cui and Wenhu Zhang

This study aims to analyze the roller dynamic characteristics and cage whirling of tapered roller bearing considering roller tilt and skew which provide a theoretical basis for…

Abstract

Purpose

This study aims to analyze the roller dynamic characteristics and cage whirling of tapered roller bearing considering roller tilt and skew which provide a theoretical basis for the design and application of tapered roller bearing.

Design/methodology/approach

Based on rolling bearing dynamic analysis, the dynamic differential equations of tapered roller bearing are established. Fine integral method and predict correct Adams–Bashforth–Moulton multi-step method are used to solve the dynamic differential equations of tapered roller bearings.

Findings

Friction at the flange contact between roller and large flange is the chief factor of roller skew. In comparison to cone speed, axial loads have more visible effect on roller skew, and proper speed or axial load is beneficial to sustain cage motion and decrease cage instability. Under the combined effort of axial load and radial load, the distribution of roller skew is correlated to the roller-flange contact load. In addition, roller skew angle in loaded zone is larger than that in unloaded zone; hence, it is helpful for cage stability if an extent radial load is applied. The pocket clearance of cage has very small influence on roller skew; therefore, a reasonable pocket clearance is suggested to assure minimum instability of cage. Friction coefficient of flange contact has a large effect on roller skew, and cage whirl is found to demonstrate a circular orbit with increasing friction coefficient.

Originality/value

The dynamic differential equations of tapered roller bearing considering roller large end/inner ring back face rib contact under various lubrication states were established. The impact of flange friction working conditions and cage pocket clearance on cage instability and roller skew were focused on. It is the first time that the ratio of the standard deviation of the cage-center translational speed to its mean value is used to access the instability of cage in tapered roller bearing.

Details

Industrial Lubrication and Tribology, vol. 70 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 April 2020

Hui Li, Heng Liu, Hao Li, Shemiao Qi, Yi Liu and Fengtao Wang

The purpose of this paper is to investigate the effect of the cage-pocket wear on the dynamic behavior of the ball bearing.

Abstract

Purpose

The purpose of this paper is to investigate the effect of the cage-pocket wear on the dynamic behavior of the ball bearing.

Design/methodology/approach

Through analyzing the complicated relationship and interactions among the ball bearing elements, the dynamic modeling of the ball bearing was established considering the gravity, drag force from the oil, hydrodynamic effect on the cage and the dynamic simulations with different amounts of the cage-pocket wear loss of the ball bearing (BPWL) were obtained by solving the ball bearing dynamic equations using Runge–Kutta method.

Findings

The results show that the trajectory of the cage’s centroid presents two vibration modes with different amplitudes. In addition, those two different forms of trajectory of different amplitudes emerge alternatively with BPWL increase moreover the diameter of the trajectory decrease significantly with the BPWL increasing, which is consistent with the experimental result and last BPWL has lightly effect on the average skidding ratio of the cage, however, the BPWL would produce significant effects on the fluctuation of the skidding ratio, which can directly reflect the stability of motion to a certain extent.

Originality/value

Practice shows that the bearing failure resulting from the cage accounts for 25 per cent of the total failure of the rolling bearings. However, few discussions about how the wear of the cage-pocket would influence the dynamic characteristics of the cage. This study can provide important ideas for the design of bearing cage-pocket size and the fault identification of the ball bearing to decrease the failure rate caused by the cage.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2019-0535/

Details

Industrial Lubrication and Tribology, vol. 72 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 September 2018

Pichai Aree

An important characteristic of most induction motors is speed- or slip-torque curve. A simplified Kloss formula is widely used for describing speed-torque characteristic because…

200

Abstract

Purpose

An important characteristic of most induction motors is speed- or slip-torque curve. A simplified Kloss formula is widely used for describing speed-torque characteristic because it is fairly simple. Only two parameters related to break-down torque and break-down slip are regarded as input parameters. Because this simplified formula ignores an unknown parameter that is a ratio between Thevenin’s and rotor resistances, an accurate torque curve characteristic may not be fully obtained over an entire speed range. Moreover, the conventional Kloss formula does not offer a speed-torque curve calculation when motor’s supply voltages and frequencies are deviated from rated values. Hence, the purpose of this paper is to present an extension of Kloss formula, which allows a more precise estimation of speed-torque and speed-current curves of single-cage three-phase induction motors over a wide range of speeds at different motor’s operating voltages, frequencies and rotor-circuit resistances.

Design/methodology/approach

The analytical approach is mainly used for determining all key parameters in the Kloss formula using a known set of data such as rated torque, starting torque, break-down torque and rated speed, in which they can be obtained from motor’s manufacturer.

Findings

The speed-torque and speed-current curves taken from laboratory measurements are compared with those from the calculations. Good agreements between them are fully observed.

Originality/value

This analytical approach is useful in providing an accurate speed-torque and speed-current curves required for most steady-state analysis.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 June 2024

Xinghong Wang, Qiang Bian, Xinhua Gao, Chunjiang Zhao, Minghui Liu, Xinghui Xie and Bowen Jiao

The purpose of this paper is to establish a dynamic model considering the actual operating conditions of the train and to study the dynamic performance and vibration…

Abstract

Purpose

The purpose of this paper is to establish a dynamic model considering the actual operating conditions of the train and to study the dynamic performance and vibration characteristics of axle box bearings under different operating conditions.

Design/methodology/approach

In this paper, based on the internal contact characteristics of double-row tapered roller bearings, a dynamic model considering the actual operating conditions of the train is established. The correctness of the model is verified by the vibration test of the bearing. Comparative analysis was conducted on the effects of axial force, radial force and rotational speed on the angular velocity of the cage, slip rate and vibration acceleration level of the inner ring.

Findings

As the force increases, the slip rate of the cages on both sides decreases, and the vibration acceleration level of the inner ring increases. With the increase of rotational speed, the cage slip rate of the axle box bearing increases and the vibration acceleration level of the inner ring increases.

Originality/value

A dynamic model is established considering the actual operating conditions, and the dynamic performance and vibration characteristics of the axle box bearing under different operating conditions are analyzed by numerical method. The research content can provide reference for the parameter design of high-speed railway bearings.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2024-0085/

Details

Industrial Lubrication and Tribology, vol. 76 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 September 2024

Xuying Li, Yanbin Liu, Jie Huang, Deyu Sang, Kun Yang and Jinbo Ling

This paper aims to reveal the influence of the grooved texture parameters on the lubrication performance of circular pocket-roller pairs in cylindrical roller bearings.

Abstract

Purpose

This paper aims to reveal the influence of the grooved texture parameters on the lubrication performance of circular pocket-roller pairs in cylindrical roller bearings.

Design/methodology/approach

In this paper, the thermal elastohydrodynamic lubrication mathematical model of the grooved texture circular pocket-roller pair was established, the finite difference method and successive over-relaxation method were used to solve the model, the influence of texture quantity, texture depth and texture area ratio on circumferential bearing capacity, friction coefficient, maximum temperature rise, stiffness and damping of the circular pocket-roller pairs were analyzed.

Findings

The results show that texture quantity, texture depth and texture area ratio significantly influence the static and dynamic characteristics of circular pocket-roller pairs. The suitable surface groove texture parameters can dramatically improve the circumferential bearing capacity, reduce the friction coefficient, inhibit the maximum temperature rise and increase the stiffness and damping of the circular pocket-roller pairs.

Originality/value

The research in this paper can provide a theoretical basis for the optimization design of pockets in cylindrical roller bearings to reduce friction and vibration.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 August 2022

Yanling Zhao and Chuanwang Wu

This paper uses numerical methods to investigate the collision and skidding of rolling elements in a cageless ball bearing. This paper aims to analyse the effects of the…

Abstract

Purpose

This paper uses numerical methods to investigate the collision and skidding of rolling elements in a cageless ball bearing. This paper aims to analyse the effects of the rotational speed and number of rolling elements on the rolling element collision and skidding.

Design/methodology/approach

Based on Hertzian theory and tribological theory, the collision contact model of the rolling element was established. Based on the proposed model, the differential equations of motion of the two degrees of freedom rolling element were constructed. The fourth-order Adams algorithm solved the collision contact force between the rolling elements. The sliding velocity between the rolling element and the inner and outer races was calculated.

Findings

The collision frequency and slip of rolling elements can be reduced by increasing the rotational speed appropriately and reducing the number of rolling elements by one.

Originality/value

The developed model can reveal the collision and slip characteristics of the rolling elements for cageless bearings. This study can provide theoretical guidance for the design and manufacture of cageless ball bearings.

Details

Industrial Lubrication and Tribology, vol. 74 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 August 2021

Pandimani, Markandeya Raju Ponnada and Yesuratnam Geddada

This study aims to present comprehensive nonlinear material modelling techniques and simulations of reinforced concrete (RC) beams subjected to short-term monotonic static load…

Abstract

Purpose

This study aims to present comprehensive nonlinear material modelling techniques and simulations of reinforced concrete (RC) beams subjected to short-term monotonic static load using the robust and reliable general-purpose finite element (FE) software ANSYS. A parametric study is carried out to analyse the flexural and ductility behaviour of RC beams under various influencing parameters.

Design/methodology/approach

To develop and validate the numerical FE models, a total of four experimentally tested simply supported RC beams are taken from the available literature and two beams are selected from each author. The concrete, steel reinforcements, bond-slip mechanism, loading and supporting plates are modelled using SOLID65, LINK180, COMBIN39 and SOLID185 elements, respectively. The validated models are then used to conduct parametric FE analysis to investigate the effect of concrete compressive strength, percentage of tensile reinforcement, compression reinforcement ratio, transverse shear reinforcement, bond-slip mechanism, concrete compressive stress-strain constitutive models, beam symmetry and varying overall depth of beam on the ultimate load-carrying capacity and ductility behaviour of RC beams.

Findings

The developed three-dimensional FE models can able to capture the load and midspan deflections at critical points, the accurate yield point of steel reinforcements, the formation of initial and progressive concrete crack patterns and the complete load-deflection curves of RC beams up to ultimate failure. From the numerical results, it can be concluded that the FE model considering the bond-slip effect with Thorenfeldt’s concrete compressive stress-strain model exhibits a better correlation with the experimental data.

Originality/value

The ultimate load and deflection results of validated FE models show a maximum deviation of less than 10% and 15%, respectively, as compared to the experimental results. The developed model is also capable of capturing concrete failure modes accurately. Overall, the FE analysis results were found quite acceptable and compared well with the experimental data at all loading stages. It is suggested that the proposed FE model is a practical and reliable tool for analyzing the flexural behaviour of RC members and can be used for performing parametric studies.

Details

World Journal of Engineering, vol. 20 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 175