Search results

1 – 10 of 37
Content available
Article
Publication date: 28 March 2022

Subhasree Dutta, Somnath Bhattacharyya and Ioan Pop

The purpose of this study is to analyze the nonhomogeneous model on the mixed convection of Al2O3–Fe3O4 Bingham plastic hybrid nanofluid in a ventilated enclosure subject to an…

Abstract

Purpose

The purpose of this study is to analyze the nonhomogeneous model on the mixed convection of Al2O3–Fe3O4 Bingham plastic hybrid nanofluid in a ventilated enclosure subject to an externally imposed uniform magnetic field. Entropy generation and the pressure drop are determined to analyze the performance of the heat transfer. The significance of Joule heating arising due to the applied magnetic field on the heat transfer of the yield stress fluid is described.

Design/methodology/approach

The ventilation in the enclosure of heated walls is created by an opening on one vertical wall through which cold fluid is injected and another opening on the opposite vertical wall through which fluid can flow out.

Findings

This study finds that the inclusion of Fe3O4 nanoparticles with the Al2O3-viscoplastic nanofluid augments the heat transfer. This rate of enhancement in heat transfer is higher than the rate by which the entropy generation is increased as well as the enhancement in the pressure drop. The yield stress has an adverse effect on the heat transfer; however, it favors thermal mixing. The magnetic field, which is acting opposite to the direction of the inlet jet, manifests heat transfer of the viscoplastic hybrid nanofluid. The horizontal jet of cold fluid produces the optimal heat transfer.

Originality/value

The objective of this study is to analyze the impact of the inclined cold jet of viscoplastic electrically conducting hybrid nanofluid on heat transfer from the enclosure in the presence of a uniform magnetic field. The combined effect of hybrid nanoparticles and a magnetic field to enhance heat transfer of a viscoplastic fluid in a ventilated enclosure has not been addressed before.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 2 November 2023

H.A. Kumara Swamy, Sankar Mani, N. Keerthi Reddy and Younghae Do

One of the major challenges in the design of thermal equipment is to minimize the entropy production and enhance the thermal dissipation rate for improving energy efficiency of…

Abstract

Purpose

One of the major challenges in the design of thermal equipment is to minimize the entropy production and enhance the thermal dissipation rate for improving energy efficiency of the devices. In several industrial applications, the structure of thermal device is cylindrical shape. In this regard, this paper aims to explore the impact of isothermal cylindrical solid block on nanofluid (Ag – H2O) convective flow and entropy generation in a cylindrical annular chamber subjected to different thermal conditions. Furthermore, the present study also addresses the structural impact of cylindrical solid block placed at the center of annular domain.

Design/methodology/approach

The alternating direction implicit and successive over relaxation techniques are used in the current investigation to solve the coupled partial differential equations. Furthermore, estimation of average Nusselt number and total entropy generation involves integration and is achieved by Simpson and Trapezoidal’s rules, respectively. Mesh independence checks have been carried out to ensure the accuracy of numerical results.

Findings

Computations have been performed to analyze the simultaneous multiple influences, such as different thermal conditions, size and aspect ratio of the hot obstacle, Rayleigh number and nanoparticle shape on buoyancy-driven nanoliquid movement, heat dissipation, irreversibility distribution, cup-mixing temperature and performance evaluation criteria in an annular chamber. The computational results reveal that the nanoparticle shape and obstacle size produce conducive situation for increasing system’s thermal efficiency. Furthermore, utilization of nonspherical shaped nanoparticles enhances the heat transfer rate with minimum entropy generation in the enclosure. Also, greater performance evaluation criteria has been noticed for larger obstacle for both uniform and nonuniform heating.

Research limitations/implications

The current numerical investigation can be extended to further explore the thermal performance with different positions of solid obstacle, inclination angles, by applying Lorentz force, internal heat generation and so on numerically or experimentally.

Originality/value

A pioneering numerical investigation on the structural influence of hot solid block on the convective nanofluid flow, energy transport and entropy production in an annular space has been analyzed. The results in the present study are novel, related to various modern industrial applications. These results could be used as a firsthand information for the design engineers to obtain highly efficient thermal systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 21 January 2022

Yong Li, Yingchun Zhang, Gongnan Xie and Bengt Ake Sunden

This paper aims to comprehensively clarify the research status of thermal transport of supercritical aviation kerosene, with particular interests in the effect of cracking on heat…

1303

Abstract

Purpose

This paper aims to comprehensively clarify the research status of thermal transport of supercritical aviation kerosene, with particular interests in the effect of cracking on heat transfer.

Design/methodology/approach

A brief review of current research on supercritical aviation kerosene is presented in views of the surrogate model of hydrocarbon fuels, chemical cracking mechanism of hydrocarbon fuels, thermo-physical properties of hydrocarbon fuels, turbulence models, flow characteristics and thermal performances, which indicates that more efforts need to be directed into these topics. Therefore, supercritical thermal transport of n-decane is then computationally investigated in the condition of thermal pyrolysis, while the ASPEN HYSYS gives the properties of n-decane and pyrolysis products. In addition, the one-step chemical cracking mechanism and SST k-ω turbulence model are applied with relatively high precision.

Findings

The existing surrogate models of aviation kerosene are limited to a specific scope of application and their thermo-physical properties deviate from the experimental data. The turbulence models used to implement numerical simulation should be studied to further improve the prediction accuracy. The thermal-induced acceleration is driven by the drastic density change, which is caused by the production of small molecules. The wall temperature of the combustion chamber can be effectively reduced by this behavior, i.e. the phenomenon of heat transfer deterioration can be attenuated or suppressed by thermal pyrolysis.

Originality/value

The issues in numerical studies of supercritical aviation kerosene are clearly revealed, and the conjugation mechanism between thermal pyrolysis and convective heat transfer is initially presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 4 November 2020

Alberto Moscatello, Anna Chiara Uggenti, Gaetano Iuso, Domenic D'Ambrosio, Gioacchino Cafiero, Raffaella Gerboni and Andrea Carpignano

The purpose of this paper is to present a procedure to design an experimental setup meant to validate an innovative approach for simulating, via computational fluid dynamics, a…

Abstract

Purpose

The purpose of this paper is to present a procedure to design an experimental setup meant to validate an innovative approach for simulating, via computational fluid dynamics, a high-pressure gas release from a rupture (e.g. on an offshore oil and gas platform). The design is based on a series of scaling exercises, some of which are anything but trivial.

Design/methodology/approach

The experimental setup is composed of a wind tunnel, the instrumented scaled (1:10) mock-up of an offshore platform and a gas release system. A correct scaling approach is necessary to define the reference speed in the wind tunnel and the conditions of the gas release to maintain similarity with respect to the real-size phenomena. The scaling of the wind velocity and the scaling of the gas release were inspired by the approach proposed by Hall et al. (1997): a dimensionless group was chosen to link release parameters, wind velocity and geometric scaling factor.

Findings

The theoretical scaling approaches for each different part of the setup were applied to the design of the experiment and some criticalities were identified, such as the existence of a set of case studies with some release parameters laying outside the applicability range of the developed scaling methodology, which will be further discussed.

Originality/value

The resulting procedure is one of a kind because it involves a multi-scaling approach because of the different aspects of the design. Literature supports for the different scaling theories but, to the best of the authors’ knowledge, fails to provide an integrated approach that considers the combined effects of scaling.

Details

Engineering Computations, vol. 38 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 4
Type: Research Article
ISSN: 0961-5539

Content available
Article
Publication date: 7 September 2015

Asterios Pantokratoras

383

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 7
Type: Research Article
ISSN: 0961-5539

Open Access
Article
Publication date: 8 November 2023

Armando Di Meglio, Nicola Massarotti, Samuel Rolland and Perumal Nithiarasu

This study aims to analyse the non-linear losses of a porous media (stack) composed by parallel plates and inserted in a resonator tube in oscillatory flows by proposing numerical…

Abstract

Purpose

This study aims to analyse the non-linear losses of a porous media (stack) composed by parallel plates and inserted in a resonator tube in oscillatory flows by proposing numerical correlations between pressure gradient and velocity.

Design/methodology/approach

The numerical correlations origin from computational fluid dynamics simulations, conducted at the microscopic scale, in which three fluid channels representing the porous media are taken into account. More specifically, for a specific frequency and stack porosity, the oscillating pressure input is varied, and the velocity and the pressure-drop are post-processed in the frequency domain (Fast Fourier Transform analysis).

Findings

It emerges that the viscous component of pressure drop follows a quadratic trend with respect to velocity inside the stack, while the inertial component is linear also at high-velocity regimes. Furthermore, the non-linear coefficient b of the correlation ax + bx2 (related to the Forchheimer coefficient) is discovered to be dependent on frequency. The largest value of the b is found at low frequencies as the fluid particle displacement is comparable to the stack length. Furthermore, the lower the porosity the higher the Forchheimer term because the velocity gradients at the stack geometrical discontinuities are more pronounced.

Originality/value

The main novelty of this work is that, for the first time, non-linear losses of a parallel plate stack are investigated from a macroscopic point of view and summarised into a non-linear correlation, similar to the steady-state and well-known Darcy–Forchheimer law. The main difference is that it considers the frequency dependence of both Darcy and Forchheimer terms. The results can be used to enhance the analysis and design of thermoacoustic devices, which use the kind of stacks studied in the present work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 17 October 2018

Decheng Li, Tiannian Zhou, Zegong Liu and Jian Wang

The purpose of this study is to investigate the transport phenomena of smoke flow in a semi-open vertical shaft.

1038

Abstract

Purpose

The purpose of this study is to investigate the transport phenomena of smoke flow in a semi-open vertical shaft.

Design/methodology/approach

The large eddy simulation (LES) method was used to model the movement of fire-induced thermal flow in a full-scale vertical shaft. With this model, different fire locations and heat release rates (HRRs) were considered simultaneously.

Findings

It was determined that the burning intensity of the fire is enhanced when the fire attaches to the sidewall, resulting in a larger continuous flame region in the compartment and higher temperatures of the spill plume in the shaft compared to a center fire. In the initial stage of the fire with a small HRR, the buoyancy-driven spill plumes incline toward the side of the shaft opposite the window. Meanwhile, the thermal plumes are also directed away from the center of the shaft by the entrained airflow, but the inclination diminishes as HRR increases. This is because a greater HRR produces higher temperatures, resulting in a stronger buoyancy to drive smoke movement evenly in the shaft. In addition, a dimensionless equation was proposed to predict the rise-time of the smoke plume front in the shaft.

Research limitations/implications

The results need to be verified with experiments.

Practical implications

The results could be applied for design and assessment of semi-open shafts.

Originality/value

This study shows the transport phenomena of smoke flow in a vertical shaft with one open side.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Content available
Article
Publication date: 1 October 1999

291

Abstract

Details

Disaster Prevention and Management: An International Journal, vol. 8 no. 4
Type: Research Article
ISSN: 0965-3562

Keywords

Content available
Article
Publication date: 1 May 1999

551

Abstract

Details

Disaster Prevention and Management: An International Journal, vol. 8 no. 2
Type: Research Article
ISSN: 0965-3562

Access

Only content I have access to

Year

All dates (37)

Content type

1 – 10 of 37