Search results

1 – 10 of 582
Open Access
Article
Publication date: 16 May 2024

Axel Buck and Christian Mundt

Reynolds-averaged Navier–Stokes (RANS) models often perform poorly in shock/turbulence interaction regions, resulting in excessive wall heat load and incorrect representation of…

Abstract

Purpose

Reynolds-averaged Navier–Stokes (RANS) models often perform poorly in shock/turbulence interaction regions, resulting in excessive wall heat load and incorrect representation of the separation length in shockwave/turbulent boundary layer interactions. The authors suggest that this can be traced back to inadequate numerical treatment of the inviscid fluxes. The purpose of this study is an extension to the well-known Harten, Lax, van Leer, Einfeldt (HLLE) Riemann solver to overcome this issue.

Design/methodology/approach

It explicitly takes into account the broadening of waves due to the averaging procedure, which adds numerical dissipation and reduces excessive turbulence production across shocks. The scheme is derived based on the HLLE equations, and it is tested against three numerical experiments.

Findings

Sod’s shock tube case shows that the scheme succeeds in reducing turbulence amplification across shocks. A shock-free turbulent flat plate boundary layer indicates that smooth flow at moderate turbulence intensity is largely unaffected by the scheme. A shock/turbulent boundary layer interaction case with higher turbulence intensity shows that the added numerical dissipation can, however, impair the wall heat flux distribution.

Originality/value

The proposed scheme is motivated by implicit large eddy simulations that use numerical dissipation as subgrid-scale model. Introducing physical aspects of turbulence into the numerical treatment for RANS simulations is a novel approach.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 26 August 2024

Sarath Radhakrishnan, Joan Calafell, Arnau Miró, Bernat Font and Oriol Lehmkuhl

Wall-modeled large eddy simulation (LES) is a practical tool for solving wall-bounded flows with less computational cost by avoiding the explicit resolution of the near-wall…

Abstract

Purpose

Wall-modeled large eddy simulation (LES) is a practical tool for solving wall-bounded flows with less computational cost by avoiding the explicit resolution of the near-wall region. However, its use is limited in flows that have high non-equilibrium effects like separation or transition. This study aims to present a novel methodology of using high-fidelity data and machine learning (ML) techniques to capture these non-equilibrium effects.

Design/methodology/approach

A precursor to this methodology has already been tested in Radhakrishnan et al. (2021) for equilibrium flows using LES of channel flow data. In the current methodology, the high-fidelity data chosen for training includes direct numerical simulation of a double diffuser that has strong non-equilibrium flow regions, and LES of a channel flow. The ultimate purpose of the model is to distinguish between equilibrium and non-equilibrium regions, and to provide the appropriate wall shear stress. The ML system used for this study is gradient-boosted regression trees.

Findings

The authors show that the model can be trained to make accurate predictions for both equilibrium and non-equilibrium boundary layers. In example, the authors find that the model is very effective for corner flows and flows that involve relaminarization, while performing rather ineffectively at recirculation regions.

Originality/value

Data from relaminarization regions help the model to better understand such phenomenon and to provide an appropriate boundary condition based on that. This motivates the authors to continue the research in this direction by adding more non-equilibrium phenomena to the training data to capture recirculation as well.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Content available

Abstract

Details

Kybernetes, vol. 41 no. 7/8
Type: Research Article
ISSN: 0368-492X

Open Access
Article
Publication date: 2 August 2019

Mair Khan, T. Salahuddin, Muhammad Malik Yousaf, Farzana Khan and Arif Hussain

The purpose of the current flow configurations is to bring to attention the thermophysical aspects of magnetohydrodynamics (MHD) Williamson nanofluid flow under the effects of…

1544

Abstract

Purpose

The purpose of the current flow configurations is to bring to attention the thermophysical aspects of magnetohydrodynamics (MHD) Williamson nanofluid flow under the effects of Joule heating, nonlinear thermal radiation, variable thermal coefficient and activation energy past a rotating stretchable surface.

Design/methodology/approach

A mathematical model is examined to study the heat and mass transport analysis of steady MHD Williamson fluid flow past a rotating stretchable surface. Impact of activation energy with newly introduced variable diffusion coefficient at the mass equation is considered. The transport phenomenon is modeled by using highly nonlinear PDEs which are then reduced into dimensionless form by using similarity transformation. The resulting equations are then solved with the aid of fifth-order Fehlberg method.

Findings

The rotating fluid, heat and mass transport effects are analyzed for different values of parameters on velocity, energy and diffusion distributions. Parameters like the rotation parameter, Hartmann number and Weissenberg number control the flow field. In addition, the solar radiation, Joule heating, Prandtl number, thermal conductivity, concentration diffusion coefficient and activation energy control the temperature and concentration profiles inside the stretching surface. It can be analyzed that for higher values of thermal conductivity, Eckret number and solar radiation parameter the temperature profile increases, whereas opposite behavior is noticed for Prandtl number. Moreover, for increasing values of temperature difference parameter and thermal diffusion coefficient, the concentration profile shows reducing behavior.

Originality/value

This paper is useful for researchers working in mathematical and theoretical physics. Moreover, numerical results are very useful in industry and daily-use processes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 24 October 2022

Babak Lotfi and Bengt Ake Sunden

This study aims to computational numerical simulations to clarify and explore the influences of periodic cellular lattice (PCL) morphological parameters – such as lattice…

1339

Abstract

Purpose

This study aims to computational numerical simulations to clarify and explore the influences of periodic cellular lattice (PCL) morphological parameters – such as lattice structure topology (simple cubic, body-centered cubic, z-reinforced body-centered cubic [BCCZ], face-centered cubic and z-reinforced face-centered cubic [FCCZ] lattice structures) and porosity value ( ) – on the thermal-hydraulic characteristics of the novel trussed fin-and-elliptical tube heat exchanger (FETHX), which has led to a deeper understanding of the superior heat transfer enhancement ability of the PCL structure.

Design/methodology/approach

A three-dimensional computational fluid dynamics (CFD) model is proposed in this paper to provide better understanding of the fluid flow and heat transfer behavior of the PCL structures in the trussed FETHXs associated with different structure topologies and high-porosities. The flow governing equations of the trussed FETHX are solved by the CFD software ANSYS CFX® and use the Menter SST turbulence model to accurately predict flow characteristics in the fluid flow region.

Findings

The thermal-hydraulic performance benchmarks analysis – such as field synergy performance and performance evaluation criteria – conducted during this research successfully identified demonstrates that if the high porosity of all PCL structures decrease to 92%, the best thermal-hydraulic performance is provided. Overall, according to the obtained outcomes, the trussed FETHX with the advantages of using BCCZ lattice structure at 92% porosity presents good thermal-hydraulic performance enhancement among all the investigated PCL structures.

Originality/value

To the best of the authors’ knowledge, this paper is one of the first in the literature that provides thorough thermal-hydraulic characteristics of a novel trussed FETHX with high-porosity PCL structures.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 16 July 2024

Ruan du Rand, Kevin Jamison and Barbara Huyssen

The purpose of this paper is to reshape a fast-jet electronics pod’s external geometry to ensure compliance with aircraft pylon load limits across its carriage envelope while…

Abstract

Purpose

The purpose of this paper is to reshape a fast-jet electronics pod’s external geometry to ensure compliance with aircraft pylon load limits across its carriage envelope while adhering to onboard system constraints and fitment specifications.

Design/methodology/approach

Initial geometric layout determination used empirical methods. Performance approximation on the aircraft with added fairings and stabilising fin configurations was conducted using a panel code. Verification of loads was done using a full steady Reynolds-averaged Navier–Stokes solver, validated against published wind tunnel test data. Acceptable load envelope for the aircraft pylon was defined using two already-certified stores with known flight envelopes.

Findings

Re-lofting the pod’s geometry enabled meeting all geometric and pylon load constraints. However, due to the pod's large size, re-lofting alone was not adequate to respect aircraft/pylon load limitations. A flight restriction was imposed on the aircraft’s roll rate to reduce yaw and roll moments within allowable limits.

Practical implications

The geometry of an electronics pod was redesigned to maximise the permissible flight envelope on its carriage aircraft while respecting the safe carriage load limits determined for its store pylon. Aircraft carriage load constraints must be determined upfront when considering the design of fast-jet electronic pods.

Originality/value

A process for determining the unknown load constraints of a carriage aircraft by analogy is presented, along with the process of tailoring the geometry of an electronics pod to respect aerodynamic load and geometric constraints.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 11
Type: Research Article
ISSN: 1748-8842

Keywords

Content available
Article
Publication date: 1 August 2005

Kovalev Igor

555

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 77 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Open Access
Article
Publication date: 23 September 2024

Prabhugouda Mallanagouda Patil, Bharath Goudar and Ebrahim Momoniat

Many industries use non-Newtonian ternary hybrid nanofluids (THNF) because of how well they control rheological and heat transport. This being the case, this paper aims to…

Abstract

Purpose

Many industries use non-Newtonian ternary hybrid nanofluids (THNF) because of how well they control rheological and heat transport. This being the case, this paper aims to numerically study the Casson-Williamson THNF flow over a yawed cylinder, considering the effects of several slips and an inclined magnetic field. The THNF comprises Al2O3-TiO2-SiO2 nanoparticles because they improve heat transmission due to large thermal conductivity.

Design/methodology/approach

Applying suitable nonsimilarity variables transforms the coupled highly dimensional nonlinear partial differential equations (PDEs) into a system of nondimensional PDEs. To accomplish the goal of achieving the solution, an implicit finite difference approach is used in conjunction with Quasilinearization. With the assistance of a script written in MATLAB, the numerical results and the graphical representation of those solutions were ascertained.

Findings

As the Casson parameter β increases, there is an improvement in the velocity profiles in both chord and span orientations, while the gradients Re1/2Cf,Re1/2C¯f reduce for the same variations of β. The velocities of Casson THNF are greater than those of Casson-Williamson THNF. Approximately, a 202% and a 32% ascension are remarked in the magnitudes of Re1/2Cf and Re1/2C¯f for Casson-Williamson THNF than the Casson THNF only. When velocity slip attribute S1 jumps to 1 from 0.5, magnitude of both F(ξ,η) and Re1/2Cf fell down and it is reflected to be 396% at ξ=1, Wi=1 and β=1. An augmentation in thermal jump results in advanced fluid temperature and lower Re1/2Nu. In particular, about 159% of down drift is detected when S2 taking 1.

Originality/value

There is no existing research on the effects of Casson-Williamson THNF flow over a yawed cylinder with multiple slips and an angled magnetic field, according to the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 19 March 2021

Dandan Qiu, Lei Luo, Zhiqi Zhao, Songtao Wang, Zhongqi Wang and Bengt Ake Sunden

The purpose of this study is to investigate the effects of film holes’ arrangements and jet Reynolds number on flow structure and heat transfer characteristics of jet impingement…

1186

Abstract

Purpose

The purpose of this study is to investigate the effects of film holes’ arrangements and jet Reynolds number on flow structure and heat transfer characteristics of jet impingement conjugated with film cooling in a semicylinder double wall channel.

Design/methodology/approach

Numerical simulations are used in this research. Streamlines on different sections, skin-friction lines, velocity, wall shear stress and turbulent kinetic energy contours near the concave target wall and vortices in the double channel are presented. Local Nusselt number contours and surface averaged Nusselt numbers are also obtained. Topology analysis is applied to further understand the fluid flow and is used in analyzing the heat transfer characteristics.

Findings

It is found that the arrangement of side films positioned far from the center jets helps to enhance the flow disturbance and heat transfer behind the film holes. The heat transfer uniformity for the case of 55° films arrangement angle is most improved and the thermal performance is the highest in this study.

Originality/value

The film holes’ arrangements effects on fluid flow and heat transfer in an impingement cooled concave channel are conducted. The flow structures in the channel and flow characteristics near target by topology pictures are first obtained for the confined film cooled impingement cases. The heat transfer distributions are analyzed with the flow characteristics. The highest heat transfer uniformity and thermal performance situation is obtained in present work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Content available
Article
Publication date: 7 September 2015

Asterios Pantokratoras

385

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 7
Type: Research Article
ISSN: 0961-5539

1 – 10 of 582