Search results

1 – 10 of over 5000
Article
Publication date: 25 February 2014

Kadir Bilisik and Bekir Yildirim

– The aim of this study was to understand the stick-slip properties of single and multiple yarn pull-out in dry and treated polyester satin woven fabric in boundary regions.

Abstract

Purpose

The aim of this study was to understand the stick-slip properties of single and multiple yarn pull-out in dry and treated polyester satin woven fabric in boundary regions.

Design/methodology/approach

Polyester satin pattern woven fabric was used to conduct the pull-out tests in order to examining the kinetic region of the force-displacement curve. Data generated from this research help the authors to obtain stick-slip force and accumulative retraction force.

Findings

It was found that stick-slip force and accumulative retraction force depend on the number of pulled ends in the fabric, fabric sample dimensions and softening treatments. Stick-slip forces of polyester satin fabric in the multiple yarn pull-out test were higher than those of the single yarn pull-out test. Stick-slip force in single and multiple yarn pull-out tests in the dry polyester satin fabric was generally higher than those of the softening treated polyester satin fabric. In addition, the warp directional single and multiple yarn stick-slip and accumulative retraction forces in the dry and softening treated polyester fabrics were generally higher than those in the weft direction in the fabric edges due to fabric density. On the other hand, the amount of stick-slip force was related to the number of interlacement points in the fabric, whereas the amount of accumulative retraction force was related to fabric structural response.

Originality/value

The mechanism of stick-slip and accumulative retraction force of dry-treated polyester satin pattern woven fabrics were explained. This research could be valuable for development of multifunctional fabrics in technical textiles and ballistic.

Details

International Journal of Clothing Science and Technology, vol. 26 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 17 December 2019

Nilankush Acharya, Suprakash Maity and Prabir Kumar Kundu

Hybrid nanofluids are of significant engrossment for their considerable heat transport rate. The steady flow of an incompressible viscous electrically conducted hybrid nanofluid…

Abstract

Purpose

Hybrid nanofluids are of significant engrossment for their considerable heat transport rate. The steady flow of an incompressible viscous electrically conducted hybrid nanofluid is considered over a rotating disk under a magnetic field. Titanium oxide (TiO2) and ferrous (CoFe2O4) nanoparticles are used with their physical properties and water is considered as host liquid. The purpose of this paper is to analyze how hydrothermal integrity varies for hybrid nanosuspension over a spinning disk in the presence of magnetic orientation.

Design/methodology/approach

Governing equations with boundary conditions are transformed by similarity transformations and then solved numerically with RK-4 method. A comparison of linear and nonlinear thermal radiation for the above-mentioned parameters is taken and the efficiency of nonlinear radiation is established, the same over nanofluid and hybrid nanofluid is also discussed. Heat lines are observed and discussed for various parameters like magnetic field, concentration, suction and injection parameter, radiation effect and Prandtl number.

Findings

Suction and increasing nanoparticle concentration foster the radial and cross-radial velocities, whereas magnetization and injection confirm the reverse trend. The rate of increment of radial friction is quite higher for the usual nanosuspension. The calculated data demonstrate that the rate for hybrid nanofluid is 8.97 percent, whereas for nanofluid it is 15.06 percent. Double-particle suspension amplifies the thermal efficiency than that of a single particle. Magnetic and radiation parameters aid the heat transfer, but nanoparticle concentration and suction explore the opposite syndrome. The magnetic parameter increases the heat transport at 36.58 and 42.71 percent for nonlinear radiation and hybrid nanosuspension, respectively.

Originality/value

Nonlinear radiation gives a higher heat transport rate and for the radiation parameter it is almost double. This result is very significant for comparison between linear and nonlinear radiation. Heat lines may be observed by taking different nanoparticle materials to get some diverse result. Hydrothermal study of such hybrid liquid is noteworthy because outcomes of this study will aid nanoscience and nanotechnology in an efficient way.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 17 December 2019

C. Sulochana and S.R. Aparna

The purpose of this paper is to analyze heat and mass transport mechanism of unsteady MHD thin film flow of aluminium–copper/water hybrid nanofluid influenced by thermophoresis…

Abstract

Purpose

The purpose of this paper is to analyze heat and mass transport mechanism of unsteady MHD thin film flow of aluminium–copper/water hybrid nanofluid influenced by thermophoresis, Brownian motion and radiation.

Design/methodology/approach

The authors initially altered the time dependent set of mathematical equations into dimensionless form of equations by using apposite transmutations. These equations are further solved numerically by deploying Runge–Kutta method along with shooting technique.

Findings

Plots and tables for skin friction coefficient, Nusselt number, Sherwood number along with velocity, temperature and concentration profiles against pertinent non-dimensional parameters are revealed. The study imparts that aluminium–copper hybrid nanoparticles facilitate higher heat transfer rate compared to mono nanoparticles. It is noteworthy to disclose that an uplift in thermophoresis and Brownian parameter depreciates heat transfer rate, while concentration profiles boost with an increase in thermophoretic parameter.

Research limitations/implications

The current study targets to investigate heat transfer characteristics of an unsteady thin film radiative flow of water-based aluminium and copper hybrid nanofluid. The high thermal and electrical conductivities, low density and corrosion resistant features of aluminium and copper with their wide range of industrial applications like power generation, telecommunication, automobile manufacturing, mordants in leather tanning, etc., have prompted us to instil these particles in the present study.

Practical implications

The present study has many practical implications in the industrial and manufacturing processes working on the phenomena like heat transfer, magnetohydrodynamics, thermal radiation, nanofluids, hybrid nanofluids with special reference to aluminium and copper particles.

Originality/value

To the best extent of the authors’ belief so far no attempt is made to inspect the flow, thermal and mass transfer of water-based hybridized aluminium and copper nanoparticles with Brownian motion and thermophoresis.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 18 April 2019

Nilankush Acharya, Kalidas Das and Prabir Kumar Kundu

The purpose of this paper is to focus on the influence of multiple slips on MHD Williamson nanofluid flow embedded in porous medium towards a linearly stretching sheet that has…

Abstract

Purpose

The purpose of this paper is to focus on the influence of multiple slips on MHD Williamson nanofluid flow embedded in porous medium towards a linearly stretching sheet that has been investigated numerically. The whole analysis has been carried out considering the presence of nth-order chemical reaction between base fluid and nanoparticles.

Design/methodology/approach

A similarity transformation technique has been adopted to convert non-linear governing partial differential equations into ordinary ones and then they are solved by using both the RK-4 method and Laplace transform homotopy perturbation method. The consequences of multiple slip parameters on dimensionless velocity, temperature and concentration and heat and mass transfer rates have been demonstrated using tabular and graphical outline.

Findings

The investigation explores that the Nusselt number reduces for escalating behaviour of velocity slip and thermal slip parameter. Fluid’s temperature rises in the presence of generative reaction parameter.

Originality/value

A fine conformity of the current results has been achieved after comparing with previous literature studies. Considering destructive chemical reaction, reduced Nusselt number is found to decrease, but reverse consequence has been noticed in the case of generative chemical reaction. Mass transport diminishes when the order of chemical reaction amplifies for both destructive and generative reactions.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 15 August 2019

Aamir Hamid, Masood Khan and Metib Alghamdi

The purpose of this paper is to analyze a mathematical model for the time-dependent flow of non-Newtonian Williamson liquid because of a stretching surface. The mathematical…

Abstract

Purpose

The purpose of this paper is to analyze a mathematical model for the time-dependent flow of non-Newtonian Williamson liquid because of a stretching surface. The mathematical formulation of the current model is accomplished from the momentum, energy and concentration balances by assuming a laminar, two-dimensional and incompressible flow subjected to a variable magnetic field. The study further aimed at discovering the possible effects of temperature-dependent thermal conductivity on the heat transfer characteristics.

Design/methodology/approach

In addition, a first-order chemical reaction is considered between the fluid and chemically reacting species. The governing transport model for Williamson fluid has been altered to ordinary differential equations via appropriate dimensionless parameters. These basic non-dimensional partially coupled differential equations of fluid motion are solved by an efficient Runge–Kutta–Fehlberg integration scheme along with the Nachtsheim–Swigert shooting technique.

Findings

It is found that the velocity slip parameter has a reducing impact on the skin friction coefficient. Moreover, we noticed that the Hartmann number and variable thermal conductivity parameters show prominent impacts on the velocity and temperature fields. It is also perceived that the fluid temperature shows an increasing trend with uplifting values of variable thermal conductivity.

Originality/value

No such work is yet published in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 November 2023

Chunli Li, Liang Li, Yungming Cheng, Liang Xu and Guangming Yu

This paper aims to develop an efficient algorithm combining straightforward response surface functions with Monte Carlo simulation to conduct seismic reliability analysis in a…

Abstract

Purpose

This paper aims to develop an efficient algorithm combining straightforward response surface functions with Monte Carlo simulation to conduct seismic reliability analysis in a systematical way.

Design/methodology/approach

The representative slip surfaces are identified and based on to calibrate multiple response surface functions with acceptable accuracy. The calibrated response surfaces are used to determine the yield acceleration in Newmark sliding displacement analysis. Then, the displacement-based limit state function is adopted to conduct seismic reliability analysis.

Findings

The calibrated response surface functions have fairly good accuracy in predicting the yield acceleration in Newmark sliding displacement analysis. The seismic reliability is influenced by such factors as PGA, spatial variability and threshold value. The proposed methodology serves as an effective tool for geotechnical practitioners.

Originality/value

The multiple sources of a seismic slope response can be effectively determined using the multiple response surface functions, which are easily implemented within geotechnical engineering.

Article
Publication date: 14 June 2018

Shashikumar N.S., Gireesha B.J., B. Mahanthesh and Prasannakumara B.C.

The microfluidics has a wide range of applications, such as micro heat exchanger, micropumps, micromixers, cooling systems for microelectronic devices, fuel cells and…

Abstract

Purpose

The microfluidics has a wide range of applications, such as micro heat exchanger, micropumps, micromixers, cooling systems for microelectronic devices, fuel cells and microturbines. However, the enhancement of thermal energy is one of the challenges in these applications. Therefore, the purpose of this paper is to enhance heat transfer in a microchannel flow by utilizing carbon nanotubes (CNTs). MHD Brinkman-Forchheimer flow in a planar microchannel with multiple slips is considered. Aspects of viscous and Joule heating are also deployed. The consequences are presented in two different carbon nanofluids.

Design/methodology/approach

The governing equations are modeled with the help of conservation equations of flow and energy under the steady-state situation. The governing equations are non-dimensionalized through dimensionless variables. The dimensionless expressions are treated via Runge-Kutta-Fehlberg-based shooting scheme. Pertinent results of velocity, skin friction coefficient, temperature and Nusselt number for assorted values of physical parameters are comprehensively discussed. Also, a closed-form solution is obtained for momentum equation for a particular case. Numerical results agree perfectly with the analytical results.

Findings

It is established that multiple slip effect is favorable for velocity and temperature fields. The velocity field of multi-walled carbon nanotubes (MWCNTs) nanofluid is lower than single-walled carbon nanotubes (SWCNTs)-nanofluid, while thermal field, Nusselt number and drag force are higher in the case of MWCNT-nanofluid than SWCNT-nanofluid. The impact of nanotubes (SWCNTs and MWCNTs) is constructive for thermal boundary layer growth.

Practical implications

This study may provide useful information to improve the thermal management of microelectromechanical systems.

Originality/value

The effects of CNTs in microchannel flow by utilizing viscous dissipation and Joule heating are first time investigated. The results for SWCNTs and MWCNTs have been compared.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 March 2020

Aaqib Majeed, Noorul Amin, A. Zeeshan, R. Ellahi, Sadiq M. Sait and K. Vafai

The purpose of this study is to examine the impact of activation energy with binary chemical reaction for unsteady flow on permeable stretching surface.

Abstract

Purpose

The purpose of this study is to examine the impact of activation energy with binary chemical reaction for unsteady flow on permeable stretching surface.

Design/methodology/approach

The simultaneous effects of multiple slip and magneto-hydrodynamic effects at the boundary are taken into account. The thermal buoyancy parameter and thermal radiation are included in both energy and momentum equations, while expression of activation energy is considered in concentration equation. Three-stage Lobatto IIIa finite difference collocation technique with bvp4c MATLAB package is used to obtained numerical results.

Findings

The influence of key elements (Schmidt number, buoyancy force ratio factor, factor of radiation, magnetic element, unsteadiness factor, suction/injection parameter, Prandtl number, activation energy, chemical reaction rate parameter, heat source and sink parameters, velocity, thermal and concentration slips, porosity parameter and temperature difference parameter) on velocity, temperature and concentration profiles are illustrated pictorially. A detailed discussion is presented to see how the graphical aspects justify the physical prospect.

Originality/value

In the best of author’s knowledge, this work is yet not available in existing literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 January 2024

Ashok K. Barik, Swetapadma Rout, Jnana Ranjan Senapati and M.M. Awad

This paper aims at studying numerically the entropy generation of nanofluid flowing over an inclined sheet in the presence of external magnetic field, heat source/sink, chemical…

Abstract

Purpose

This paper aims at studying numerically the entropy generation of nanofluid flowing over an inclined sheet in the presence of external magnetic field, heat source/sink, chemical reaction along with slip boundary conditions imposed on an impermeable wall.

Design/methodology/approach

A suitable similarity transformation technique has been used to convert the coupled nonlinear partial differential equations to ordinary differential equations (ODEs). The ODEs are then solved simultaneously using the finite difference method implemented through an in-house computer program. The effects of different controlling parameters such as magnetic parameter, radiation parameter, Brownian motion parameter, thermophoresis parameter, chemical reaction parameter, Reynolds number, Brinkmann number, Prandtl number, velocity slip parameter, temperature slip parameter and the concentration slip parameter on the entropy generation and Bejan number have been discussed comprehensively through the relevant physical insights for the first time.

Findings

The relative strengths of the irreversibilities due to heat transfer, fluid friction and the mass diffusion arising due to the change in each of the controlling variables have been delineated both in the near-wall and far-away-wall regions, which may be helpful for a better understanding of the thermo-fluid dynamics of nanofluid in boundary layer flows. The numerical results obtained from the present study have also been validated with results published in open literature.

Originality/value

The effects of different controlling parameters such as magnetic parameter, radiation parameter, Brownian motion parameter, thermophoresis parameter, chemical reaction parameter, Reynolds number, Brinkmann number, Prandtl number, velocity slip parameter, temperature slip parameter and the concentration slip parameter on the entropy generation and Bejan number have been discussed comprehensively through the relevant physical insights for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 May 2020

A. Roja, B.J. Gireesha and B.C. Prasannakumara

Miniaturization with high thermal performance and lower cost is one of the advanced developments in industrial science chemical and engineering fields including microheat…

Abstract

Purpose

Miniaturization with high thermal performance and lower cost is one of the advanced developments in industrial science chemical and engineering fields including microheat exchangers, micro mixers, micropumps, cooling microelectro mechanical devices, etc. In addition to this, the minimization of the entropy is the utilization of the energy of thermal devices. Based on this, in the present investigation, micropolar nanofluid flow through an inclined channel under the impacts of viscous dissipation and mixed convection with velocity slip and temperature jump has been numerically studied. Also the influence of magnetism and radiative heat flux is used.

Design/methodology/approach

The nonlinear system of ordinary differential equations are obtained by applying suitable dimensionless variables to the governing equations, and then the Runge–Kutta–Felhberg integration scheme is used to find the solution of velocity and temperature. Entropy generation and Bejan number are calculated via using these solutions.

Findings

It is established to notice that the entropy generation can be improved with the aspects of viscous dissipation, magnetism and radiative heat flux. The roles of angle of inclination (α), Eckert number (Ec), Reynolds number (Re), thermal radiation (Rd), material parameter (K),  slip parameter (δ), microinertial parameter (aj), magnetic parameter (M), Grashof number (Gr) and pressure gradient parameter (A) are demonstrated. It is found that the angle of inclination and Grashof number enhances the entropy production while it is diminished with material parameter and magnetic parameter.

Originality/value

Electrically conducting micropolar nanofluid flow through an inclined channel subjected to the friction irreversibility with temperature jump and velocity slip under the influence of radiative heat flux has been numerically investigated.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 5000