Search results

1 – 10 of over 3000
Article
Publication date: 11 October 2018

Surendra Balaji Devarakonda, Pallavi Bulusu, Marwan Al-rjoub, Amit Bhattacharya and Rupak Kumar Banerjee

The purpose of this study is to evaluate the impact of external head cooling on alleviating the heat stress in the human body by analyzing the temperatures of the core body (Tc)…

Abstract

Purpose

The purpose of this study is to evaluate the impact of external head cooling on alleviating the heat stress in the human body by analyzing the temperatures of the core body (Tc), blood (Tblood) and head (Th) during exercise conditions using 3D whole body model.

Design/methodology/approach

Computational study is conducted to comprehend the influence of external head cooling on Tc, Tblood and Th. The Pennes bioheat and energy balance equations formulated for the whole-body model are solved concurrently to obtain Tc, Tblood and Th for external head cooling values from 33 to 233 W/m2. Increased external head cooling of 404 W/m2 is used to compare the numerical and experimental Th data.

Findings

Significant reductions of 0.21°C and 0.38°C are observed in Th with external head cooling of 233 and 404 W/m2, respectively. However, for external head cooling of 233 W/m2, lesser reductions of 0.03°C and 0.06°C are found in Tc and Tblood, respectively. Computational results for external head cooling of 404 W/m2 show a difference of 15 per cent in Th compared to experimental values from literature.

Originality/value

The development of stress because of heat generated within human body is major concern for athletes exercising at high intensities. This study provides an insight into the effectiveness of external head cooling in regulating the head and body temperatures during exercise conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 April 2023

Yajing Hu, Botong Li, Xinhui Si, Jing Zhu and Linyu Meng

Atherosclerosis tends to occur in the distinctive carotid sinus, leading to vascular stenosis and then causing death. The purpose of this paper is to investigate the effect of…

Abstract

Purpose

Atherosclerosis tends to occur in the distinctive carotid sinus, leading to vascular stenosis and then causing death. The purpose of this paper is to investigate the effect of sinus sizes, positions and hematocrit on blood flow dynamics and heat transfer by different numerical approaches.

Design/methodology/approach

The fluid flow and heat transfer in the carotid artery with three different sinus sizes, three different sinus locations and four different hematocrits are studied by both computational fluid dynamics (CFD) and fluid-structure interaction (FSI) methods. An ideal geometric model and temperature-dependent non-Newtonian viscosity are adopted, while the wall heat flux concerning convection, radiation and evaporation is used.

Findings

With increasing sinus size, the average velocity and temperature of the blood fluid decrease, and the area of time average wall shear stress (TAWSS)with small values decreases. As the distances between sinuses and bifurcation points increase, the average temperature and the maximum TAWSS decrease. Atherosclerosis is more likely to develop when the sinuses are enlarged, when the sinuses are far from bifurcation points, or when the hematocrit is relatively large or small. The probability of thrombosis forming and developing becomes larger when the sinus becomes larger and the hematocrit is small enough. The movement of the arterial wall obviously reduces the velocity of blood flow, blood temperature and WSS. This study also suggests that the elastic role of arterial walls cannot be ignored.

Originality/value

The hemodynamics of the internal carotid artery sinus in a carotid artery with a bifurcation structure have been investigated thoroughly, on which the impacts of many factors have been considered, including the non-Newtonian behavior of blood and empirical boundary conditions. The results when the FSI is considered and absent are compared.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 March 2023

Jinyu Li, Hangyu Yan, Yunfeng Ni, Linlin Fu and Yunchu Yang

At present, electrical heating clothing is widely used to keep ourselves warm at low temperature. The purpose of this paper is to explore the heat transfer performance of…

Abstract

Purpose

At present, electrical heating clothing is widely used to keep ourselves warm at low temperature. The purpose of this paper is to explore the heat transfer performance of electrical heating fabric and the thermal comfort of human skin at low temperature.

Design/methodology/approach

The combined model of skin-electrical heating fabric system was established to simulate human skin tissue wearing electrical heating clothing. A series of simulation experiments are designed on the basis of verifying the effectiveness of the combined model. The temperature distribution inside the combined model and on the skin surface under different heating powers is simulated and analyzed. At the same time, the influence of ambient temperature on the thermal performance of electrical heating fabric was explored.

Findings

The skin model with blood vessels reflected the temperature change of human skin wearing electrical heating clothing. The higher the heating power of the electrical heating fabric was, the greater the temperature of the skin surface changed, the faster the temperature rose and the longer the time required to reach the stable state would be. After the heating element was electrified, it had the greatest effect on the average temperature of the epidermis and dermis, had smaller effect on the average temperature of subcutaneous layer and had little effect on the temperature of blood vessels. When the heating power was the same, the higher the ambient temperature was, the more obvious the heating effect of electrical heating fabric was. Electrical heating fabrics with different heating powers were suitable for different ambient temperature ranges.

Originality/value

A reasonable and effective evaluation method for the thermal comfort of electrical heating fabric was provided by establishing the skin model and combined model of the skin-electrical heating fabric system. It provides a reference for the design and application of electrical heating clothing.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 29 April 2014

Joanna Łaszczyk, Anna Maczko, Wojciech Walas and Andrzej J. Nowak

This paper aims to test the inverse analysis, based on the standard least-square method, which will finally lead to find the appropriate parameters of modelling of the brain…

Abstract

Purpose

This paper aims to test the inverse analysis, based on the standard least-square method, which will finally lead to find the appropriate parameters of modelling of the brain cooling process.

Design/methodology/approach

To test the presented in this paper method of inverse analysis the numerical simulations of the bioheat transfer process in the neonatal body were performed. To model the bioheat transfer the Pennes bioheat equation and the modified Fiala model were applied.

Findings

The performed tests of the inverse analysis proved that it is possible to estimate the proper parameters of the process using this tool, but always with the small mistake.

Research limitations/implications

The presented method still requires a lot of tests. The test with the data from real measurements can be very valuable.

Practical implications

The determination of the proper parameters of the bioheat transfer in the neonatal body can finally be used to perform the numerical simulations of the brain cooling process.

Social implications

The performance of the numerical simulations of the brain cooling process in the proper way can finally helps protect newborns’ health and life.

Originality/value

In the paper the attempt of the inverse analysis in order to determine the parameters of bioheat transfer in the newborn's body is made.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 March 2016

Dong Li, Bin Chen and Guo-Xiang Wang

The purpose of this paper is to present a numerical analysis of the laser surgery of port wine stain (PWS) with cryogen spray cooling to compare the treatment effect between pulse…

Abstract

Purpose

The purpose of this paper is to present a numerical analysis of the laser surgery of port wine stain (PWS) with cryogen spray cooling to compare the treatment effect between pulse dye laser and Nd:YAG laser, explain the incomplete clear of the lesion and optimize the laser parameter.

Design/methodology/approach

The complex structure of skin and PWS is simplified to a multi-layer skin model that consists of top epidermal layer and underneath dermis layer embedded with discrete blood vessels. The cooling effect of cryogen spray before laser firing is quantified by a general correlation obtained recently from the experimental data. The light distribution is modeled by the Monte Carlo method. The heat transfer in skin tissue is calculated by Pennes bioheat transfer model. The thermal damage of blood vessel is quantified by the Arrhenius damage integral.

Findings

For the vessel size studied (10-120 µm), pulse duration is recommended shorter than 6 ms. Large and deeply buried vessels, which may survive from 595 nm laser irradiation, can be coagulated by 1,064 nm laser due to its deep light penetration depth in skin. Furthermore, a desired uniform heating within the large vessel lumen can be achieved by 1,064 nm laser whereas 595 nm laser produce non-uniform heating.

Originality/value

The possible reason for the poor responding and incomplete clearance lesions is clarified. Laser wavelength and pulse duration are suggested to improve the clinical results.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 March 2016

Anup Paul, Arunn Narasimhan and Sarit Kumar Das

The large blood vessels (LBV) would act as a heat sink and hence play a significant role during photo-thermal therapy. Gold nanoshell was considered as a high-heat absorbing agent…

Abstract

Purpose

The large blood vessels (LBV) would act as a heat sink and hence play a significant role during photo-thermal therapy. Gold nanoshell was considered as a high-heat absorbing agent in photo-thermal heating to reduce the cooling effect of LBV. The heat sink effect of LBV results in insignificant irreversible tissue thermal damage. The paper aims to discuss these issues.

Design/methodology/approach

In this paper, the thermal history of tissue embedded with LBV during photo-thermal heating were calculated using finite element-based simulation technique. A volumetric laser source term based on modified Beer-Lambert law was introduced to model laser heating. The numerically predicted temperature drop was validated against that of previously performed experiments by the authors on tissue mimic embedded with simulated blood vessels. In the later part of the study, Arrhenius equation was coupled with the energy equation to investigate and report the irreversible thermal damage to the bio-tissues.

Findings

The results obtained conclude that tissue with different orientation of blood vessels results in different thermal response at the tissue surface. Gold nanoshells were introduced into the laser irradiated tissue to overcome the cooling effect of LBV during plasmonic photo-thermal heating. The effect of size and concentration of nanoparticles on tissue heating were analyzed. The predicted damage parameter was much lower in case of tissue embedded with blood vessel than that predicted in case of bare tissue, which results in incomplete tissue necrosis. Finally, the effects of laser specification, blood vessel specification and blood perfusion on the tissue thermal damage were examined.

Originality/value

The conjugate energy equations in conjunction with Arrhenius equation were solved numerically to predict the tissue irreversible damage embedded with LBV.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2006

Murat Tunç, Ünal Çamdali, Cem Parmaksizoğlu and Sermet Çikrikçi

Cancer is the foremost disease that causes death. The objective of hyperthermia in cancer therapy is to raise the temperature of cancerous tissue above a therapeutic value while…

2832

Abstract

Purpose

Cancer is the foremost disease that causes death. The objective of hyperthermia in cancer therapy is to raise the temperature of cancerous tissue above a therapeutic value while maintaining the surrounding normal tissue at sublethal temperature values in cases where surgical intervention is dangerous or impossible. The malignant tissue is heated up to 42°C in the treatment. In this method, the unaffected tissues are aimed to have minimum damage, while the affected ones are destroyed. Therefore, it is very important for the optimization of the method to know the temperature profiles in both tissues. Accurately estimating the tissue temperatures has been a very important issue for tumor hyperthermia treatment planning. This paper, proposes to theoretically predict the temperature response of the biological tissues subject to external EM heating by using the space‐dependent blood perfusion term in Pennes bio‐heat equation.

Design/methodology/approach

The bio‐heat transfer equation is parabolic partial differential equation. Grid points including independent variables are initially formed in solution of partial differential equation by finite element method. In this study, one dimensional bio‐heat transfer equation is solved by flex‐PDE finite element method.

Findings

In this study, the bio‐heat transfer equation is solved for variable blood perfusion values and the temperature field resulting after a hyperthermia treatment is obtained. Homogeneous, non‐homogeneous tissue and constant, variable blood perfusion rates are considered in this study to display the temperature fields in the biological material exposed to externally induced electromagnetic irradiation.

Originality/value

Temperature‐dependent tissue thermophysical properties have been used and the Pennes equation is solved by FEM analysis. Variable blood perfusion and heat generation values have been used in calculations for healthy tissue and tissue with tumor.

Details

Engineering Computations, vol. 23 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 March 2016

Joanna E. Laszczyk and Andrzej J Nowak

The purpose of this paper is to present the computational model of the neonate’s brain cooling process. The main aim of the analysis is to tune the developed computational model…

Abstract

Purpose

The purpose of this paper is to present the computational model of the neonate’s brain cooling process. The main aim of the analysis is to tune the developed computational model, make it convergent and representing the hypothermia therapy reasonably. To find the appropriate model parameters the trial of an inverse analysis, based on the standard least-square method, is performed. Having partially validated model the number of numerical simulations are carried out to compare their results with measurements made during real therapy.

Design Methodology Approach

The geometrical model of the newborn’s body is built using MRI and CT scans utilizing Mimics software and the Design Modeler while Ansys Fluent with its User Defined Function capability was used to implement the whole model and to carry out simulations. To model the bioheat transfer the Pennes bioheat equation is applied. In the mathematical model blood perfusion rate, metabolic heat generation rate as well as the arterial blood temperature are dependent on the tissue temperature. In order to determine the proper values of model parameters of bioheat transport in neonate’s body the attempt to inverse analysis is also performed.

Findings

The performed inverse analysis resulted in the values of model parameters (metabolic heat sources, blood perfusions etc.). Tuned model was then applied to simulate brain cooling process with reasonable accuracy. Obtained model parameters were also compared to the data obtained from neonatologists.

Research limitations implications

The presented numerical model still requires tests and simulations. The results from the inverse analysis based on the real measurements can be very valuable.

Practical implications

The determination of the proper parameters of the bioheat transfer in the neonatal body can finally be used to control the numerical simulations of the brain cooling process. The simulation of the re-warming process after hypothermic therapy can be improved considerably.

Social implications

The performance of the numerical simulations of the brain cooling process in the proper way can finally helps protect newborns’ health and life.

Originality Value

In the paper 3-D real geometrical model of the newborn’s body includes head, torso and limbs and different types of tissues are distinguished in the model. The considered bioheat transfer problem is also fully 3-D. This model is then utilised together with inverse analysis in order to determine the model parameters for the newborn’s body.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 September 2008

Ying He, Ryutaro Himeno, Hao Liu, Hideo Yokota and Zhi Gang Sun

The purpose of this paper is to investigate the blood flow and temperature distribution in human extremities.

Abstract

Purpose

The purpose of this paper is to investigate the blood flow and temperature distribution in human extremities.

Design/methodology/approach

The simulation is carried out from three aspects. Firstly, the hemodynamics in the human upper limb is analyzed by one‐dimensional model for pulsalite flow in an elastic tube. Secondly, the blood flow and heat transfer through living tissues are described basing on porous media theory, and the tissue model is coupled with the one‐dimensional blood flow model. With respect to geometric modeling, MR‐image‐based modeling method is employed to construct a realistic model of the human finger.

Findings

It is found that the temperature variation is closely related to the blood flow variation in the fingertip and the blood flow distribution in the tissue is dependent on the locations of large arteries and veins.

Originality/value

Blood flow and temperature distribution in a 3D realistic human finger are firstly obtained by coupling the blood circulation and porous media model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 7/8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 May 2022

Rameesh Lakshan Bulathsinghala, Serosha Mandika Wijeyaratne, Sandun Fernando, Thantirige Sanath Siroshana Jayawardana, Vishvanath Uthpala Indrajith Senadhipathi Mudiyanselage and Samith Lakshan Sunilsantha Kankanamalage

The purpose of this paper is to develop a prototype of a wearable medical device in the form of a bandage with a real-time data monitoring platform, which can be used domestically…

Abstract

Purpose

The purpose of this paper is to develop a prototype of a wearable medical device in the form of a bandage with a real-time data monitoring platform, which can be used domestically for diabetic patients to identify the possibility of foot ulceration at the early stage.

Design/methodology/approach

The prototype can measure blood volumetric change and temperature variation in the forefoot area simultaneously. The waveform extracted using a pulsatile-blood-flow signal was used to assess blood perfusion-related information, and hence, predict ischemic ulcers. The temperature difference between ulcerated and the reference was used to predict neuropathic ulcers. The medical device can be used as a bandage during the application wherein the sensory module is placed inside the hollow pocket of the bandage. A platform was developed through a mobile application where doctors can extract real-time information, and hence, determine the possibility of ulceration.

Findings

The height of the peaks in the pulsatile-blood-flow signal measured from the subject with foot ischemic ulcers is significantly less than that of the subject without ischemic ulcers. In the presence of ischemic ulcers, the captured waveform flattens. Therefore, the blood perfusion from arteries to the tissue of the forefoot is considerably low for the subject with ischemic ulcers. According to the temperature difference data measured over 25 consecutive days, the temperature difference of the subject with neuropathic ulcers occasionally exceeded the 4 °F range but mostly had higher values closer to the 4 °F range. However, the temperature difference of the subject who had no complications of neuropathic ulcers did not exceed the 4 °F range, and the majority of the measurements occupy a narrow range from −2°F to 2 °F.

Originality/value

The proposed prototype of wearable medical apparatus can monitor both temperature variation and pulsatile-blood-flow signal on the forefoot simultaneously and thereby predict both ischemic and neuropathic diabetes using a single device. Most importantly, the wearable medical device can be used domestically without clinical assistance with a real-time data monitoring platform to predict the possibility of ulceration and the course of action thereof.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of over 3000