Search results

1 – 10 of over 18000
Article
Publication date: 23 November 2018

Sara Yousefi, Reza Farzipoor Saen and Seyed Shahrooz Seyedi Hosseininia

To manage cash flow in supply chains, the purpose of this paper is to propose inverse data envelopment analysis (DEA) model.

Abstract

Purpose

To manage cash flow in supply chains, the purpose of this paper is to propose inverse data envelopment analysis (DEA) model.

Design/methodology/approach

This paper develops an inverse range directional measure (RDM) model to deal with positive and negative values. The proposed model is developed to estimate input and output variations such that not only efficiency score of decision making unit (DMU) remains unchanged, but also efficiency score of other DMUs do not change.

Findings

Given that auto making industry deals with huge variety and volumes of parts, cash flow management is so important. In this paper, inverse RDM models are developed to manage cash flow in supply chains. For the first time, the authors propose inverse DEA models to deal with negative data. By applying the inverse DEA models, managers distinguish efficient DMUs from inefficient ones and devise appropriate strategies to increase efficiency score. Given results of inverse integrated RDM model, other combinations of cash flow strategies are proposed. The suggested strategies can be taken into account as novel strategies in cash flow management. Interesting point is that such strategies do not lead to changes in efficiency scores.

Originality/value

In this paper, inverse input and output-oriented RDM model is developed in presence of negative data. These models are applied in resource allocation and investment analysis problems. Also, inverse integrated RDM model is developed.

Article
Publication date: 1 June 1999

Mohamed S. Gadala and Andrew D.B. McCullough

This paper presents a numerical study of inverse parameter identification problems in fracture mechanics. Inverse methodology is applied to the detection of subsurface cracks and…

1024

Abstract

This paper presents a numerical study of inverse parameter identification problems in fracture mechanics. Inverse methodology is applied to the detection of subsurface cracks and to the study of propagating cracks. The procedure for detecting subsurface cracks combines the finite element method with a sequential quadratic programming algorithm to solve for the unknown geometric parameters associated with the internal flaw. The procedure utilizes finite element substructuring capabilities in order to minimize the processing and solution time for practical problems. The finite element method and non‐linear optimization are also used in determining the direction a crack will propagate in a heterogeneous planar domain. This procedure involves determining the direction that produces the maximum strain energy release for a given increment of crack growth. The procedure is applied to several numerical examples. The results of these numerical studies coincide with theoretical predictions and experimentally observed crack behavior.

Details

Engineering Computations, vol. 16 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 March 2016

Joanna E. Laszczyk and Andrzej J Nowak

The purpose of this paper is to present the computational model of the neonate’s brain cooling process. The main aim of the analysis is to tune the developed computational model…

Abstract

Purpose

The purpose of this paper is to present the computational model of the neonate’s brain cooling process. The main aim of the analysis is to tune the developed computational model, make it convergent and representing the hypothermia therapy reasonably. To find the appropriate model parameters the trial of an inverse analysis, based on the standard least-square method, is performed. Having partially validated model the number of numerical simulations are carried out to compare their results with measurements made during real therapy.

Design Methodology Approach

The geometrical model of the newborn’s body is built using MRI and CT scans utilizing Mimics software and the Design Modeler while Ansys Fluent with its User Defined Function capability was used to implement the whole model and to carry out simulations. To model the bioheat transfer the Pennes bioheat equation is applied. In the mathematical model blood perfusion rate, metabolic heat generation rate as well as the arterial blood temperature are dependent on the tissue temperature. In order to determine the proper values of model parameters of bioheat transport in neonate’s body the attempt to inverse analysis is also performed.

Findings

The performed inverse analysis resulted in the values of model parameters (metabolic heat sources, blood perfusions etc.). Tuned model was then applied to simulate brain cooling process with reasonable accuracy. Obtained model parameters were also compared to the data obtained from neonatologists.

Research limitations implications

The presented numerical model still requires tests and simulations. The results from the inverse analysis based on the real measurements can be very valuable.

Practical implications

The determination of the proper parameters of the bioheat transfer in the neonatal body can finally be used to control the numerical simulations of the brain cooling process. The simulation of the re-warming process after hypothermic therapy can be improved considerably.

Social implications

The performance of the numerical simulations of the brain cooling process in the proper way can finally helps protect newborns’ health and life.

Originality Value

In the paper 3-D real geometrical model of the newborn’s body includes head, torso and limbs and different types of tissues are distinguished in the model. The considered bioheat transfer problem is also fully 3-D. This model is then utilised together with inverse analysis in order to determine the model parameters for the newborn’s body.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 July 2023

Monireh Jahani Sayyad Noveiri, Sohrab Kordrostami and Mojtaba Ghiyasi

The purpose of this study is to estimate inputs (outputs) and flexible measures when outputs (inputs) are changed provided that the relative efficiency values remain without…

Abstract

Purpose

The purpose of this study is to estimate inputs (outputs) and flexible measures when outputs (inputs) are changed provided that the relative efficiency values remain without change.

Design/methodology/approach

A novel inverse data envelopment analysis (DEA) approach with flexible measures is proposed in this research to assess inputs (outputs) and flexible measures when outputs (inputs) are perturbed on condition that the relative efficiency scores remain unchanged. Furthermore, flexible inverse DEA approaches proposed in this study are used for a numerical example from the literature and an application of Iranian banking industry to clarify and validate them.

Findings

The findings show that including flexible measures into the investigation effects on the changes of performance measures estimated and leads to more reasonable achievements.

Originality/value

The traditional inverse DEA models usually investigate the changes of some determinate input-output factors for the changes of other given input-output indicators assuming that the efficiency values are preserved. However, there are situations that the changes of performance measures should be tackled while some measures, called flexible measures, can play either input or output roles. Accordingly, inverse DEA optimization models with flexible measures are rendered in this paper to address these issues.

Details

Journal of Modelling in Management, vol. 19 no. 1
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 13 June 2016

Lei Wang, Xiaojun Wang and Xiao Li

– The purpose of this paper is to focus on the influences of the uncertain dynamic responses on the reconstruction of loads.

Abstract

Purpose

The purpose of this paper is to focus on the influences of the uncertain dynamic responses on the reconstruction of loads.

Design/methodology/approach

Based on the assumption of unknown-but-bounded (UBB) noise, a time-domain approach to estimate the uncertain time-dependent external loads is presented by combining the inverse system method in modern control theory and interval analysis in interval mathematics. Inspired by the concept of set membership identification in control theory, an interval analysis model of external loads time history, which is indeed a region or feasible set containing all possible loads being consistent with the bounded structural acceleration responses is established and further solved by two interval algorithms.

Findings

Unlike traditional loads identification methods which only give a point estimation, an interval estimation of external loads time history, which is a region containing all the possible loads being consistent with the uncertain structural responses, is determined. The correlation characteristics among the responses of acceleration, velocity, and displacement are also discussed in consideration of the UBB uncertainty.

Originality/value

For one hand, the solution of the inverse problem in original system is transformed to the solution of the direct problem in inverse system; for another, the authors deal with the uncertainty by use of interval analysis method, and the identified interval process, which contains any possible external loads time history being consistent with the bounded structural responses can be approximately obtained.

Article
Publication date: 26 September 2019

Peyman Mayeli and Mehdi Nikfar

The present study aims to perform inverse analysis of a conjugate heat transfer problem including conduction and forced convection via the quasi-Newton method. The inverse analysis

103

Abstract

Purpose

The present study aims to perform inverse analysis of a conjugate heat transfer problem including conduction and forced convection via the quasi-Newton method. The inverse analysis is defined for a heat source that is surrounded by a solid medium which is exposed to a free stream in external flow.

Design/methodology/approach

The objective of the inverse design problem is finding temperature distribution of the heat source as thermal boundary condition to establish a prescribed temperature along the interface of solid body and fluid. This problem is a simplified version of thermal-based ice protection systems in which the formation of ice is avoided by maintaining the interface of fluid and solid at a specified temperature.

Findings

The effects of the different pertinent parameters such as Reynolds number, interface temperature and thermal conductivity ratio of fluid and solid mediums are analyzed.

Originality/value

This paper fulfils the analysis to study how thermal based anti-icing system can be used with different heat source shapes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 July 2023

Guozhi Xu, Xican Li and Hong Che

In order to improve the estimation accuracy of soil organic matter, this paper aims to establish a modified model for hyperspectral estimation of soil organic matter content based…

Abstract

Purpose

In order to improve the estimation accuracy of soil organic matter, this paper aims to establish a modified model for hyperspectral estimation of soil organic matter content based on the positive and inverse grey relational degrees.

Design/methodology/approach

Based on 82 soil sample data collected in Daiyue District, Tai'an City, Shandong Province, firstly, the spectral data of soil samples are transformed by the first order differential and logarithmic reciprocal first order differential and so on, the correlation coefficients between the transformed spectral data and soil organic matter content are calculated, and the estimation factors are selected according to the principle of maximum correlation. Secondly, the positive and inverse grey relational degree model is used to identify the samples to be identified, and the initial estimated values of the organic matter content are obtained. Finally, based on the difference information between the samples to be identified and their corresponding known patterns, a modified model for the initial estimation of soil organic matter content is established, and the estimation accuracy of the model is evaluated using the mean relative error and the determination coefficient.

Findings

The results show that the methods of logarithmic reciprocal first order differential and the first-order differential of the square root for transforming the original spectral data are more effective, which could significantly improve the correlation between soil organic matter content and spectral data. The modified model for hyperspectral estimation of soil organic matter has high estimation accuracy, the average relative error (MRE) of 11 test samples is 4.091%, and the determination coefficient (R2) is 0.936. The estimation precision is higher than that of linear regression model, BP neural network and support vector machine model. The application examples show that the modified model for hyperspectral estimation of soil organic matter content based on positive and inverse grey relational degree proposed in this article is feasible and effective.

Social implications

The model in this paper has clear mathematical and physics meaning, simple calculation and easy programming. The model not only fully excavates and utilizes the internal information of known pattern samples with “insufficient and incomplete information”, but also effectively overcomes the randomness and grey uncertainty in the spectral estimation of soil organic matter. The research results not only enrich the grey system theory and methods, but also provide a new approach for hyperspectral estimation of soil properties such as soil organic matter content, water content and so on.

Originality/value

The paper succeeds in realizing both a modified model for hyperspectral estimation of soil organic matter based on the positive and inverse grey relational degrees and effectively dealing with the randomness and grey uncertainty in spectral estimation.

Details

Grey Systems: Theory and Application, vol. 13 no. 4
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 1 March 1996

Jean‐Loup Chenot, E. Massoni and JL. Fourment

Focuses on the inverse problems arising from the simulation of forming processes. Considers two sets of problems: parameter identification and shape optimization. Both are solved…

Abstract

Focuses on the inverse problems arising from the simulation of forming processes. Considers two sets of problems: parameter identification and shape optimization. Both are solved using an optimization method for the minimization of a suitable objective function. The convergence and convergence rate of the method depend on the accuracy of the derivatives of this function. The sensitivity analysis is based on a discrete approach, e.g. the differentiation of the discrete problem equations. Describes the method for non‐linear, non‐steady‐state‐forming problems involving contact evolution. First, it is applied to the parameter identification and to the torsion test. It shows good convergence properties and proves to be very efficient for the identification of the material behaviour. Then, it is applied to the tool shape optimization in forging for a two‐step process. A few iterations of the inverse method make it possible to suggest a suitable shape for the preforming tools.

Details

Engineering Computations, vol. 13 no. 2/3/4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 2002

Hamdy Mohy Afefy, Salah El‐Din Fahmy Taher, Abdel‐Hakim A. Khalil and Mohamed E. Issa

The most simple equivalent frame system with reduced degrees of freedom is proposed for handling multi‐story multi‐bay infilled frames. The system is composed of homogenized…

Abstract

The most simple equivalent frame system with reduced degrees of freedom is proposed for handling multi‐story multi‐bay infilled frames. The system is composed of homogenized continuum for the reinforced concrete members braced with unilateral diagonal struts for each bay, which are only activated in compression. Identification of the equivalent system characteristics and nonlinear material properties are accomplished from the concepts of inverse analysis approach along with statistical tests of hypotheses is employed to establish the appropriate filtering scheme and the proper accuracy tolerance. The suggested system allows for nonlinear finite element static and dynamic analysis of sophisticated infilled reinforced concrete frames. Sensitivity analysis is undertaken to check the suitability of the proposed system to manipulate various structural applications.

Details

Engineering Computations, vol. 19 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 August 2022

Chunyun Zhang, Jie Mei, Yushuai Bai, Miao Cui, Haifeng Peng and X. W. Gao

The purpose of this study is to simultaneously determine the constitutive parameters and boundary conditions by solving inverse mechanical problems of power hardening…

Abstract

Purpose

The purpose of this study is to simultaneously determine the constitutive parameters and boundary conditions by solving inverse mechanical problems of power hardening elastoplastic materials in three-dimensional geometries.

Design/methodology/approach

The power hardening elastoplastic problem is solved by the complex variable finite element method in software ABAQUS, based on a three-dimensional complex stress element using user-defined element subroutine. The complex-variable-differentiation method is introduced and used to accurately calculate the sensitivity coefficients in the multiple parameters identification method, and the Levenberg–Marquardt algorithm is applied to carry out the inversion.

Findings

Numerical results indicate that the complex variable finite element method has good performance for solving elastoplastic problems of three-dimensional geometries. The inversion method is effective and accurate for simultaneously identifying multi-parameters of power hardening elastoplastic problems in three-dimensional geometries, which could be employed for solving inverse elastoplastic problems in engineering applications.

Originality/value

The constitutive parameters and boundary conditions are simultaneously identified for power hardening elastoplastic problems in three-dimensional geometries, which is much challenging in practical applications. The numerical results show that the inversion method has high accuracy, good stability, and fast convergence speed.

1 – 10 of over 18000