Search results

1 – 10 of 26
Open Access
Article
Publication date: 6 May 2024

Danusa Silva da Costa, Lucely Nogueira dos Santos, Nelson Rosa Ferreira, Katiuchia Pereira Takeuchi and Alessandra Santos Lopes

The aim was not to perform a systematic review but firstly to search in PubMed, Science Direct, Scopus and Web of Science databases on the papers published in the last five years…

Abstract

Purpose

The aim was not to perform a systematic review but firstly to search in PubMed, Science Direct, Scopus and Web of Science databases on the papers published in the last five years using tools for reviewing the statement of preferred information item for systematic reviews without focusing on a randomized analysis and secondly to perform a bibliometric analysis on the properties of films and coatings added of tocopherol for food packaging.

Design/methodology/approach

On January 24, 2022, information was sought on the properties of films and coatings added of tocopherol for use as food packaging published in PubMed, Science Direct, Scopus and Web of Science databases. Further analysis was performed using bibliometric indicators with the VOSviewer tool.

Findings

The searches returned 33 studies concerning the properties of films and coatings added of tocopherol for food packaging, which were analyzed together for a better understanding of the results. Data analysis using the VOSviewer tool allowed a better visualization and exploration of these words and the development of maps that showed the main links between the publications.

Originality/value

In the area of food science and technology, the development of polymers capable of promoting the extension of the shelf life of food products is sought, so the knowledge of the properties is vital for this research area since combining a biodegradable polymeric material with a natural antioxidant active is of great interest for modern society since they associate environmental preservation with food preservation.

Details

British Food Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 4 November 2022

Laiming Yu, Yaqin Fu and Yubing Dong

The purpose of this study is to investigate the thermomechanical condition on the shape memory property of Polybutylene adipate-co-terephthalate (PBAT). PBAT is a widely…

Abstract

Purpose

The purpose of this study is to investigate the thermomechanical condition on the shape memory property of Polybutylene adipate-co-terephthalate (PBAT). PBAT is a widely researched and rapidly developed biodegradable copolyester. In a tensile test, we found that the fractured PBAT samples had a heat-driven shape memory effect which piqued our interest, and it will lay a foundation for the application of PBAT in new fields (such as heat shrinkable film).

Design/methodology/approach

The shape memory effect of PBAT and the effect of the thermomechanical condition on its shape memory property were confirmed and systematically investigated by a thermal mechanical analyzer and tensile machine.

Findings

The results showed that the PBAT film had broad shape memory transform temperature and exhibited excellent thermomechanical stability and shape memory properties. The shape memory fixity ratio (Rf) of the PBAT films was increased with the prestrain temperature and prestrain, where the highest Rf exceeded 90%. The shape memory recovery ratio (Rr) of the PBAT films was increased with the shape memory recovery temperature and decreased with the prestrain value, and the highest Rr was almost 100%. Moreover, the PBAT films had high shape memory recovery stress which increased with the prestrain value and decreased with the prestrain temperature, and the highest shape memory recovery stress can reach 7.73 MPa.

Research limitations/implications

The results showed that PBAT had a broad shape memory transform temperature, exhibited excellent thermomechanical stability and shape memory performance, especially for the sample programmed at high temperature and had a larger prestrian, which will provide a reference for the design, processing and application of PBAT-based heat shrinkable film and smart materials.

Originality/value

This study confirmed and systematically investigated the shape memory effect of PBAT and the effect of the thermomechanical condition on the shape memory property of PBAT.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 25 April 2024

Ilse Valenzuela Matus, Jorge Lino Alves, Joaquim Góis, Paulo Vaz-Pires and Augusto Barata da Rocha

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process…

209

Abstract

Purpose

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process, materials, structural design features and implementation location to determine predominant parameters, environmental impacts, advantages, and limitations.

Design/methodology/approach

The review analysed 16 cases of artificial reefs from both temperate and tropical regions. These were categorised based on the AM process used, the mortar material used (crucial for biological applications), the structural design features and the location of implementation. These parameters are assessed to determine how effectively the designs meet the stipulated ecological goals, how AM technologies demonstrate their potential in comparison to conventional methods and the preference locations of these implementations.

Findings

The overview revealed that the dominant artificial reef implementation occurs in the Mediterranean and Atlantic Seas, both accounting for 24%. The remaining cases were in the Australian Sea (20%), the South Asia Sea (12%), the Persian Gulf and the Pacific Ocean, both with 8%, and the Indian Sea with 4% of all the cases studied. It was concluded that fused filament fabrication, binder jetting and material extrusion represent the main AM processes used to build artificial reefs. Cementitious materials, ceramics, polymers and geopolymer formulations were used, incorporating aggregates from mineral residues, biological wastes and pozzolan materials, to reduce environmental impacts, promote the circular economy and be more beneficial for marine ecosystems. The evaluation ranking assessed how well their design and materials align with their ecological goals, demonstrating that five cases were ranked with high effectiveness, ten projects with moderate effectiveness and one case with low effectiveness.

Originality/value

AM represents an innovative method for marine restoration and management. It offers a rapid prototyping technique for design validation and enables the creation of highly complex shapes for habitat diversification while incorporating a diverse range of materials to benefit environmental and marine species’ habitats.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 March 2024

Ahmad Hadipour, Zahra Mahmoudi, Saeed Manoochehri, Heshmatollah Ebrahimi-Najafabadi and Zahra Hesari

Particles are of the controlled release delivery systems. Also, topically applied olive oil has a protective effect against ultraviolet B (UVB) exposure. Due to its sensitivity to…

Abstract

Purpose

Particles are of the controlled release delivery systems. Also, topically applied olive oil has a protective effect against ultraviolet B (UVB) exposure. Due to its sensitivity to oxidation, various studies have investigated the production of olive oil particles. The purpose of this study was to use chitosan and sodium alginate as the vehicle polymers for olive oil.

Design/methodology/approach

The gelation method used to prepare the sodium alginate miliparticles containing olive oil and particles were coated with chitosan. Morphology and size, zeta potential, infrared spectrum of olive oil miliparticles, encapsulation efficiency and oil release profile were investigated. Among 12 primary fabricated formulations, formulations F5 (olive oil loaded alginate miliparticles) and F11 (olive oil loaded alginate miliparticles + chitosan coat) were selected for further evaluations.

Findings

The size of the miliparticles was in the range of 1,100–1,600 µm. Particles had a spherical appearance, and chitosan coat made a smoother surface according to the scanning electron microscopy. The zeta potential of miliparticles were −30 mV for F5 and +2.7 mV for F11. Fourier transform infrared analysis showed that there was no interaction between olive oil and other excipients. Encapsulation efficiency showed the highest value of 85% in 1:4 (olive oil:alginate solution) miliparticles in F11. Release study indicated a maximum release of 68.22% for F5 and 60.68% for F11 in 24 h (p-value < 0.016). Therefore, coating with chitosan had a marked effect on slowing the release of olive oil. These results indicated that olive oil in various amounts can be successfully encapsulated into the sodium-alginate capsules cross-linked with glutaraldehyde.

Originality/value

To the best of the authors’ knowledge, no study has used chitosan and sodium alginate as the vehicle polymers for microencapsulation of olive oil.

Details

Nutrition & Food Science , vol. 54 no. 3
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 19 April 2024

Hoda Sabry Sabry Othman, Salwa H. El-Sabbagh and Galal A. Nawwar

This study aims to investigate the behavior of the green biomass-derived copper (lignin/silica/fatty acids) complex, copper lignin/silica/fatty acids (Cu-LSF) complex, when…

Abstract

Purpose

This study aims to investigate the behavior of the green biomass-derived copper (lignin/silica/fatty acids) complex, copper lignin/silica/fatty acids (Cu-LSF) complex, when incorporated into the nonpolar ethylene propylene diene (EPDFM) rubber matrix, focusing on its reinforcing and antioxidant effect on the resulting EPDM composites.

Design/methodology/approach

The structure of the prepared EPDM composites was confirmed by Fourier-transform infrared spectroscopy, and the dispersion of the additive fillers and antioxidants in the EPDM matrix was investigated using scanning electron microscopy. Also, the rheometric characteristics, mechanical properties, swelling behavior and thermal gravimetric analysis of all the prepared EPDM composites were explored as well.

Findings

Results revealed that the Cu-LSF complex dispersed well in the nonpolar EPDM rubber matrix, in thepresence of coupling system, with enhanced Cu-LSF-rubber interactions and increased cross-linking density, which reflected on the improved rheological and mechanical properties of the resulting EPDM composites. From the various investigations performed in the current study, the authors can suggest 7–11 phr is the optimal effective concentration of Cu-LSF complex loading. Interestingly, EPDM composites containing Cu-LSF complex showed better antiaging performance, thermal stability and fluid resistance, when compared with those containing the commercial antioxidants (2,2,4-trimethyl-1,2-dihydroquinoline and N-isopropyl-N’-phenyl-p-phenylenediamine). These findings are in good agreement with our previous study on polar nitrile butadiene rubber.

Originality/value

The current study suggests the green biomass-derived Cu-LSF complex to be a promising low-cost and environmentally safe alternative filler and antioxidant to the hazardous commercial ones.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 22 April 2024

Muhammad Abas, Tufail Habib and Sahar Noor

This study aims to investigate the fabrication of solid ankle foot orthoses (SAFOs) using fused deposition modeling (FDM) printing technology. It emphasizes cost-effective 3D…

Abstract

Purpose

This study aims to investigate the fabrication of solid ankle foot orthoses (SAFOs) using fused deposition modeling (FDM) printing technology. It emphasizes cost-effective 3D scanning with the Kinect sensor and conducts a comparative analysis of SAFO durability with varying thicknesses and materials, including polylactic acid (PLA) and carbon fiber-reinforced (PLA-C), to address research gaps from prior studies.

Design/methodology/approach

In this study, the methodology comprises key components: data capture using a cost-effective Microsoft Kinect® Xbox 360 scanner to obtain precise leg dimensions for SAFOs. SAFOs are designed using CAD tools with varying thicknesses (3, 4, and 5 mm) while maintaining consistent geometry, allowing controlled thickness impact investigation. Fabrication uses PLA and PLA-C materials via FDM 3D printing, providing insights into material suitability. Mechanical analysis uses dual finite element analysis to assess force–displacement curves and fracture behavior, which were validated through experimental testing.

Findings

The results indicate that the precision of the scanned leg dimensions, compared to actual anthropometric data, exhibits a deviation of less than 5%, confirming the accuracy of the cost-effective scanning approach. Additionally, the research identifies optimal thicknesses for SAFOs, recommending a 4 and 5 mm thickness for PLA-C-based SAFOs and an only 5 mm thickness for PLA-based SAFOs. This optimization enhances the overall performance and effectiveness of these orthotic solutions.

Originality/value

This study’s innovation lies in its holistic approach, combining low-cost 3D scanning, 3D printing and computational simulations to optimize SAFO materials and thickness. These findings advance the creation of cost-effective and efficient orthotic solutions.

Article
Publication date: 19 March 2024

Diana Irinel Baila, Filippo Sanfilippo, Tom Savu, Filip Górski, Ionut Cristian Radu, Catalin Zaharia, Constantina Anca Parau, Martin Zelenay and Pacurar Razvan

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM…

Abstract

Purpose

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM) processes, have gained significant attention in recent years. Their accuracy, multi-material capability and application in novel fields, such as implantology, biomedical, aviation and energy industries, underscore the growing importance of these materials. The purpose of this study is oriented toward the application of new advanced materials in stent manufacturing realized by 3D printing technologies.

Design/methodology/approach

The methodology for designing personalized medical devices, implies computed tomography (CT) or magnetic resonance (MR) techniques. By realizing segmentation, reverse engineering and deriving a 3D model of a blood vessel, a subsequent stent design is achieved. The tessellation process and 3D printing methods can then be used to produce these parts. In this context, the SLA technology, in close correlation with the new types of developed resins, has brought significant evolution, as demonstrated through the analyses that are realized in the research presented in this study. This study undertakes a comprehensive approach, establishing experimentally the characteristics of two new types of photopolymerizable resins (both undoped and doped with micro-ceramic powders), remarking their great accuracy for 3D modeling in die-casting techniques, especially in the production process of customized stents.

Findings

A series of analyses were conducted, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, mapping and roughness tests. Additionally, the structural integrity and molecular bonding of these resins were assessed by Fourier-transform infrared spectroscopy–attenuated total reflectance analysis. The research also explored the possibilities of using metallic alloys for producing the stents, comparing the direct manufacturing methods of stents’ struts by SLM technology using Ti6Al4V with stent models made from photopolymerizable resins using SLA. Furthermore, computer-aided engineering (CAE) simulations for two different stent struts were carried out, providing insights into the potential of using these materials and methods for realizing the production of stents.

Originality/value

This study covers advancements in materials and additive manufacturing methods but also approaches the use of CAE analysis, introducing in this way novel elements to the domain of customized stent manufacturing. The emerging applications of these resins, along with metallic alloys and 3D printing technologies, have brought significant contributions to the biomedical domain, as emphasized in this study. This study concludes by highlighting the current challenges and future research directions in the use of photopolymerizable resins and biocompatible metallic alloys, while also emphasizing the integration of artificial intelligence in the design process of customized stents by taking into consideration the 3D printing technologies that are used for producing these stents.

Article
Publication date: 16 April 2024

P. Gunasekar, Anderson A. and Praveenkumar T.R.

Composite materials have revolutionized the aerospace industry by offering superior structural qualities over traditional elements. This study aims to focus on the development and…

Abstract

Purpose

Composite materials have revolutionized the aerospace industry by offering superior structural qualities over traditional elements. This study aims to focus on the development and testing of bamboo natural fiber-based composites enhanced with SiO2 nanoparticles.

Design/methodology/approach

The investigation involved fabricating specimens with varying nanoparticle compositions (0, 10 and 20%) and conducting tensile, flexural, impact and fracture toughness tests. Results indicated significant improvements in mechanical properties with the addition of nanoparticles, particularly at a 10% composition level.

Findings

This study underscores the potential of natural fiber composites, highlighting their environmental friendliness, cost-effectiveness and improved structural properties when reinforced with nanoparticles. The findings suggest an optimal ratio for nanoparticle integration, emphasizing the critical role of precise mixing proportions in achieving superior composite performance.

Originality/value

The tensile strength, flexural strength, impact resistance and fracture toughness exhibited notable enhancements compared with the 0 and 20% nanoparticle compositions. The 10% composition showed the most promising outcomes, showcasing increased strength across all parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 March 2024

Mauricio Pérez Giraldo, Mauricio Vasquez, Alejandro Toro, Robison Buitrago-Sierra and Juan Felipe Santa

This paper aims to develop a stable gel-type lubricant emulating commercial conditions. This encompassed rheological and tribological assessments, alongside field trials on the…

20

Abstract

Purpose

This paper aims to develop a stable gel-type lubricant emulating commercial conditions. This encompassed rheological and tribological assessments, alongside field trials on the Medellín tram system.

Design/methodology/approach

The gel-type lubricant with graphite and aluminum powder is synthesized. Rheological tests, viscosity measurements and linear viscoelastic regime assessments are conducted. Subsequently, tribological analyses encompassing four-ball and twin disc methods are executed. Finally, real-world testing is performed on the Medellín tram system.

Findings

An achieved lubricant met the stipulated criteria, yielding innovative insights into the interaction of graphite and aluminum powder additives under varying tests.

Originality/value

Novel findings are unveiled regarding the interaction of graphite and aluminum powder additives in tribological, rheological and real-world trials. In addition, the wear behavior of polymers is observed, along with the potential utilization of such additives in tramway systems.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 October 2022

Eman Salim, Wael S. Mohamed and Rasha Sadek

Paper aims to evaluate the efficiency of traditional chitosan, nano chitosan, and chitosan nanocomposites for consolidating aged papyrus samples. Cellulose-based materials, such…

Abstract

Purpose

Paper aims to evaluate the efficiency of traditional chitosan, nano chitosan, and chitosan nanocomposites for consolidating aged papyrus samples. Cellulose-based materials, such as papyrus sheets and paper, which are the most common types of writing supports for works of art in many museums and archive. They are subjected to different types of deterioration factors that may lead to many conservation problems. Consolidation treatment is one of the most common conservation treatments, which should have perform after much testing to select the appropriate consolidants.

Design/methodology/approach

This research paper aims to evaluate the resistance of traditional chitosan, nanochitosan and chitosan/zinc oxide nanocomposite as an eco-friendly papyrus strengthening. Untreated and treated papyrus was thermally aged and characterized via scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). Antimicrobial activity of the papyrus specimens was also determined against four tested pathogenic bacteria by disc diffusion method: MRSA, Staphylococcus aureus, E. coli and P. aeruginosa.

Findings

The results revealed that chitosan nanocomposite showed a remarkable enhancement of papyrus tensile properties and presence of ZnO prevents the effects of biodeterioration.

Originality/value

Zinc oxide nanoparticles enhance the optical properties and increase the chemical reactions between the consolidating material and the treated papyrus.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 26