Search results

1 – 10 of 289
Article
Publication date: 14 September 2012

Gunilla Albinsson and Kerstin Arnesson

The purpose of this article is to show how a model for sustainable learning has been formed in the meetings between practitioners and researchers.

1526

Abstract

Purpose

The purpose of this article is to show how a model for sustainable learning has been formed in the meetings between practitioners and researchers.

Design/methodology/approach

With the point of departure in an interactive research approach, the authors have worked with learning and common knowledge development. Empirical data were collected from nine learning seminars, which were carried out within the framework of an EU project.

Findings

It is shown by means of empirical examples from an ongoing EU project how the pedagogic method of learning seminars came to be a mediating tool for reciprocal learning between researchers, project leaders and project participants.

Originality/value

The learning seminars constituted an important part of a reflexive learning process where the learning consists of both practicable and theoretically anchored knowledge. Together with the project participants, the authors developed a model for sustainable learning. This model consists of a reflection model, which rests on four fundamental conditions; pedagogic leadership, the learning group, problem areas/situation and time aspects. This article fills a significant knowledge gap in terms of the development of learning within organizations.

Details

The Learning Organization, vol. 19 no. 6
Type: Research Article
ISSN: 0969-6474

Keywords

Article
Publication date: 1 June 1996

Daniel Eriksson and Bengt Sundén

The transient temperature distribution in a rotating cylindrical shellwhich is heated by an incident time varying heat flux (nuclearpulse) as well as a constant heat flux, is…

Abstract

The transient temperature distribution in a rotating cylindrical shell which is heated by an incident time varying heat flux (nuclear pulse) as well as a constant heat flux, is determined numerically by a finite difference method. The shell is cooled by combined convection and thermal radiation. The effects of cooling and rotation on the temperature distribution as well as the time‐ and space‐dependence are shown. Rotation provides a sinusoidal temperature variation in time for a fixed surface and circumferential position. Increased rotation reduces the maximum temperature in the shell and also provides a more uniform temperature distribution in the circumferential direction.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 6 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 July 2019

Dandan Qiu, Lei Luo, Songtao Wang, Bengt Ake Sunden and Xinhong Zhang

This study aims to focus on the surface curvature, jet to target spacing and jet Reynolds number effects on the heat transfer and fluid flow characteristics of a slot jet…

Abstract

Purpose

This study aims to focus on the surface curvature, jet to target spacing and jet Reynolds number effects on the heat transfer and fluid flow characteristics of a slot jet impinging on a confined concave target surface at constant jet to target spacing.

Design/methodology/approach

Numerical simulations are used in this research. Jet to target spacing, H/B is varying from 1.0 to 2.2, B is the slot width. The jet Reynolds number, Rej, varies from 8,000 to 40,000, and the surface curvature, R2/B, varies from 4 to 20. Results of the target surface heat transfer, flow parameters and fluid flow in the concave channel are performed.

Findings

It is found that an obvious backflow occurs near the upper wall. Both the local and averaged Nusselt numbers considered in the defined region respond positively to the Rej. The surface curvature plays a positive role in increasing the averaged Nusselt number for smaller surface curvature (4-15) but affects little as the surface curvature is large enough (> 15). The thermal performance is larger for smaller surface curvature and changes little as the surface curvature is larger than 15. The jet to target spacing shows a negative effect in heat transfer enhancement and thermal performance.

Originality/value

The surface curvature effects are conducted by verifying the concave surface with constant jet size. The flow characteristics are first obtained for the confined impingement cases. Then confined and unconfined slot jet impingements are compared. An ineffective point for surface curvature effects on heat transfer and thermal performance is obtained.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 21 January 2022

Yong Li, Yingchun Zhang, Gongnan Xie and Bengt Ake Sunden

This paper aims to comprehensively clarify the research status of thermal transport of supercritical aviation kerosene, with particular interests in the effect of cracking on heat…

1344

Abstract

Purpose

This paper aims to comprehensively clarify the research status of thermal transport of supercritical aviation kerosene, with particular interests in the effect of cracking on heat transfer.

Design/methodology/approach

A brief review of current research on supercritical aviation kerosene is presented in views of the surrogate model of hydrocarbon fuels, chemical cracking mechanism of hydrocarbon fuels, thermo-physical properties of hydrocarbon fuels, turbulence models, flow characteristics and thermal performances, which indicates that more efforts need to be directed into these topics. Therefore, supercritical thermal transport of n-decane is then computationally investigated in the condition of thermal pyrolysis, while the ASPEN HYSYS gives the properties of n-decane and pyrolysis products. In addition, the one-step chemical cracking mechanism and SST k-ω turbulence model are applied with relatively high precision.

Findings

The existing surrogate models of aviation kerosene are limited to a specific scope of application and their thermo-physical properties deviate from the experimental data. The turbulence models used to implement numerical simulation should be studied to further improve the prediction accuracy. The thermal-induced acceleration is driven by the drastic density change, which is caused by the production of small molecules. The wall temperature of the combustion chamber can be effectively reduced by this behavior, i.e. the phenomenon of heat transfer deterioration can be attenuated or suppressed by thermal pyrolysis.

Originality/value

The issues in numerical studies of supercritical aviation kerosene are clearly revealed, and the conjugation mechanism between thermal pyrolysis and convective heat transfer is initially presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 19 March 2021

Dandan Qiu, Lei Luo, Zhiqi Zhao, Songtao Wang, Zhongqi Wang and Bengt Ake Sunden

The purpose of this study is to investigate the effects of film holes’ arrangements and jet Reynolds number on flow structure and heat transfer characteristics of jet impingement…

1098

Abstract

Purpose

The purpose of this study is to investigate the effects of film holes’ arrangements and jet Reynolds number on flow structure and heat transfer characteristics of jet impingement conjugated with film cooling in a semicylinder double wall channel.

Design/methodology/approach

Numerical simulations are used in this research. Streamlines on different sections, skin-friction lines, velocity, wall shear stress and turbulent kinetic energy contours near the concave target wall and vortices in the double channel are presented. Local Nusselt number contours and surface averaged Nusselt numbers are also obtained. Topology analysis is applied to further understand the fluid flow and is used in analyzing the heat transfer characteristics.

Findings

It is found that the arrangement of side films positioned far from the center jets helps to enhance the flow disturbance and heat transfer behind the film holes. The heat transfer uniformity for the case of 55° films arrangement angle is most improved and the thermal performance is the highest in this study.

Originality/value

The film holes’ arrangements effects on fluid flow and heat transfer in an impingement cooled concave channel are conducted. The flow structures in the channel and flow characteristics near target by topology pictures are first obtained for the confined film cooled impingement cases. The heat transfer distributions are analyzed with the flow characteristics. The highest heat transfer uniformity and thermal performance situation is obtained in present work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 August 2019

Wei Du, Lei Luo, Songtao Wang, Jian Liu and Bengt Ake Sunden

The purpose of this study is to enhance the thermal performance in the labyrinth channel by different ribs shape. The labyrinth channel is a relatively new cooling structure to…

Abstract

Purpose

The purpose of this study is to enhance the thermal performance in the labyrinth channel by different ribs shape. The labyrinth channel is a relatively new cooling structure to decrease the temperature near the trailing region of gas turbine.

Design/methodology/approach

Based on the geometric similarity, a simplified geometric model is used. The k − ω turbulence model is used to close the Navier–Stokes equations. Five rib shapes (one rectangular rib, two arched ribs and two trapezoid ribs) and five Reynolds numbers (10,000 to 50,000) are considered. The Nusselt number, flow structure and friction factor are analyzed.

Findings

Nusselt number is tightly related to the rib shape in the labyrinth channel. The different shapes of the ribs result in different horseshoe vortex and wake region. In general, the arched rib brings the highest Nusselt number and friction factor. The Nusselt number is increased by 15.8 per cent compared to that of trapezoidal ribs. High Nusselt number is accompanied by the high friction factor in a labyrinth channels. The friction factor is increased by 64.6 per cent compared to rectangular ribs. However, the rib shape has a minor effect on the overall thermal performance.

Practical implications

This study is useful to protect the trailing region of advanced gas turbine.

Originality/value

This paper presents the flow structure and heat transfer characteristics in a labyrinth channel with different rib shapes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 July 2019

Guohua Zhang, Xueting Liu, Bengt Ake Sundén and Gongnan Xie

This study aims to clarify the mechanism of film hole location at the span-wise direction of an internal cooling channel with crescent ribs on the adiabatic film cooling…

Abstract

Purpose

This study aims to clarify the mechanism of film hole location at the span-wise direction of an internal cooling channel with crescent ribs on the adiabatic film cooling performance, three configurations are designed to observe the effects of the distance between the center of the ellipse and the side wall(Case 1, l = w/2, Case 2, l = w/3 and for Case 3, l = w/4).

Design/methodology/approach

Numerical simulations are conducted under two blowing ratios (i.e. 0.5 and 1) and a fixed cross-flow Reynolds number (Rec = 100,000) with a verified turbulence model.

Findings

It is shown that at low blowing ratio, reducing the distance increases the film cooling effectiveness but keeps the trend of the effectiveness unchanged, while at high blowing ratio, the characteristic is a little bit different in the range of 0 = x/D =10.

Research limitations/implications

These features could be explained by the fact that shrinking the distance between the hole and side wall induces a much smaller reserved region and vortex downstream the ribs and a lower resistance for cooling air entering the film hole. Furthermore, the spiral flow inside the hole is impaired.

Originality/value

As a result, the kidney-shaped vortices originating from the jet flow are weakened, and the target surface can be well covered, resulting in an enhancement of the adiabatic film cooling performance.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 August 2018

Trude Klevan, Bengt Karlsson, Lydia Turner, Nigel Short and Alec Grant

The purpose of this paper is to explore how sharing stories of being a mental health professional and academic, based more broadly on serendipity and searching in life, can serve…

Abstract

Purpose

The purpose of this paper is to explore how sharing stories of being a mental health professional and academic, based more broadly on serendipity and searching in life, can serve as means for bridging and developing cross-cultural understandings and collaborative work.

Design/methodology/approach

This paper is a relational autoethnography based on face-to-face and written conversational dialogue between five mental health academics from the UK and Norway.

Findings

The very practice of writing this paper displays and serves the purpose of bridging people, cultures and understandings, at several levels, in the facilitation of new research and writing projects. Troubling traditional boundaries between “us” and “them, and the “knower” and the “known,” the writing is theoretically underpinned by Friendship as Method, situated in a New Materialist context.

Originality/value

Through its conversational descriptions and explorations the paper shows how doing relational autoethnography can be purposeful in developing cross-cultural understandings and work at both professional and personal levels. It also demonstrates how autoethnography as relational practice can be useful in the sharing of this methodology between people who are more and less familiar with it.

Details

Qualitative Research Journal, vol. 18 no. 4
Type: Research Article
ISSN: 1443-9883

Keywords

Article
Publication date: 5 March 2018

Jinsheng Wang, Lei Luo, Lei Wang, Bengt Ake Sunden and Songtao Wang

The fluid flow in a rotating channel is obviously different from that in a stationary channel due to the existence of Coriolis force, which, in turn, enhances the heat transfer on…

Abstract

Purpose

The fluid flow in a rotating channel is obviously different from that in a stationary channel due to the existence of Coriolis force, which, in turn, enhances the heat transfer on the trailing side and reduces the heat transfer on the leading side. The purpose of this paper is to study various rib configurations combined with channel orientation on heat transfer and frictional loss in a rotating channel.

Design/methodology/approach

In the present study, the k-ω SST model was used as the turbulence model. The fluid flow direction in the channel is radially outward. The angle between the rotation axis and leading side is 45°. The channel aspect ratio (W/H) is 2, the blockage ratio (e/Dn ) is 0.1 and the pitch ratio (P/e) is 10. The Reynolds number is fixed at 10,000 and the rotation number varies from 0 to 0.7. Angled ribs, reversed angled ribs, standard V-shaped ribs and outer-leaning V-shaped ribs, are examined.

Findings

It is found that the reversed angled rib configuration and the outer-leaning V-shaped rib configuration display better heat transfer performance than the V-shaped ribs in rotating condition, which is in contrast to stationary condition. At the leading side, the reversed angled rib and the outer-leaning V-shaped rib show better performance in recovering the heat transfer recession due to the negative effects of the Coriolis force.

Research limitations/implications

In the present study, the fluid is incompressible with constant thermophysical properties and the flow is steady.

Practical implications

The results of this study will be helpful in design of ribbed channels internal cooling for turbine blade.

Originality/value

The results imply that the rib configuration combined with channel orientation significantly impacts the heat transfer performance in a rotating channel. The reversed angled rib and the outer-leaning V-shaped rib show better heat transfer performance than standard V-shaped ribs, especially at high Rotating numbers, which is in contrast to stationary condition. The outer-leaning V-shaped rib has a relatively good heat transfer uniformity along the widthwise direction.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 September 2020

Lei Luo, Yifeng Zhang, Chenglong Wang, Songtao Wang and Bengt Ake Sunden

The pin fin is applied into a Lamilloy cooling structure which is broadly used in the leading edge region of the modern gas turbine vane. The purpose of this paper is to…

Abstract

Purpose

The pin fin is applied into a Lamilloy cooling structure which is broadly used in the leading edge region of the modern gas turbine vane. The purpose of this paper is to investigate effects of the layout, diameter and shape of pin fins on the flow structure and heat transfer characteristics in a newly improved Lamilloy structure at the leading edge region of a turbine vane.

Design/methodology/approach

A numerical method is applied to investigate effects of the layout, diameter and shape of pin fins on the flow structure and heat transfer characteristics in a newly improved Lamilloy structure at the leading edge of a turbine vane. The diverse locations of pin fins are Lp = 0.35, 0.5, 0.65. The diameter of the pin fins varies from 8 mm to 32 mm. Three different ratios of root to roof diameter for pin fins are also investigated, i.e. k = 0.5, 1, 2. The Reynolds number ranges from 10,000 and 50,000. Results of the flow structures, heat transfer on the target surface and pin fin surfaces, and friction factor are studied.

Findings

The heat transfer on the pin fin surface gradually decreases and then increases as the location of the pin fins increases. Increasing the diameter of the pin fins causes the heat transfer on the pin fin surface to gradually increase, while a lower value of the friction factor occurs. Besides, the heat transfer on the pin fin surface at a small root diameter increases remarkably, but a slight heat transfer penalty is found at the target surface. It is also found that both the Reynolds analogy performance and the thermal performance are increased compared to the baseline whose diameter and normalized location of pin fins are set as 16 and 0.5 mm, respectively.

Social implications

The models provide a basic theoretical study to deal with nonuniformity of the temperature field for the turbine vane leading edge. The investigation also provides a better understanding of the heat transfer and flow characteristics in the leading edge region of a modern turbine vane.

Originality/value

This is a novel method to adopt pin fins into a Lamilloy cooling structure with curvature. It presents that the heat transfer of the pin fin surface in a pin-fin Lamilloy cooling structure with curvature can be significantly increased by changing the parameters of the pin fins which may lead to various flow behavior. In addition, the shape of the pin fin also shows great influence on the heat transfer and flow characteristics. However, the heat transfer of the target surface shows a small sensitivity to different layouts, diameter and shape of pin fin.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 289