Search results

1 – 10 of 32
Article
Publication date: 28 February 2023

Sara Rashidian, Robin Drogemuller, Sara Omrani and Fereshteh Banakar

The application of integrated project delivery (IPD) in conjunction with building information modeling (BIM) and Lean Construction (LC) as the efficient method for improving…

Abstract

Purpose

The application of integrated project delivery (IPD) in conjunction with building information modeling (BIM) and Lean Construction (LC) as the efficient method for improving collaboration and delivering construction projects has been acknowledged by construction academics and professionals. Once organizations have fully embraced BIM, IPD and LC integration, a measurement tool such as a maturity model (MM) for benchmarking their progress and setting realistic goals for continuous improvement will be required. In the context of MMs literature, however, no comprehensive analysis of these three construction management methods has been published to reveal the current trends and common themes in which the models have approached each other.

Design/methodology/approach

Therefore, this study integrates systematic literature review (SLR) and thematic analysis techniques to review and categorize the related MMs; the key themes in which the interrelationship between BIM, IPD and LC MMs has been discussed and conceptualized in the attributes; the shared characteristics of the existing BIM, IPD and LC MMs, as well as their strengths and limitations. The Preferred Reporting Items for Systematic Reviews (PRISMA) method has been used as the primary procedure for article screening and reviewing published papers between 2007 and 2022.

Findings

Despite the growth of BIM, IPD and LC integration publications and acknowledgment in the literature, no MM has been established that holistically measures BIM, IPD and LC integration in an organization. This study identifies five interrelated and overlapping themes indicative of the collaboration of BIM, IPD and LC in existing MMs' structure, including customer satisfaction, waste minimization, Lean practices and cultural and legal aspects. Furthermore, the MMs' common characteristics, strengths and limitations are evaluated to provide a foundation for developing future BIM, IPD and LC-related MMs.

Practical implications

This paper examines the current status of research and the knowledge gaps around BIM, IPD and LC MMs. In addition, the highlighted major themes serve as a foundation for academics who intend to develop integrated BIM, IPD, and LC MMs. This will enable researchers to build upon these themes and establish a comprehensive list of maturity attributes fulfilling the BIM, IPD and LC requirements and principles. In addition, the MMs' BIM, IPD and LC compatibility themes, which go beyond themes' intended characteristics in silos, increase industry practitioners' awareness of the underlying factors of BIM, IPD and LC integration.

Originality/value

This review article is the first of a kind to analyze the interaction of IPD, BIM and LC in the context of MMs in current AEC literature. This study concludes that BIM, IPD and LC share several joint cornerstones according to the existing MMs.

Details

Smart and Sustainable Built Environment, vol. 13 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 14 June 2022

Samuel Adeniyi Adekunle, Clinton Ohis Aigbavboa and Obuks Augustine Ejohwomu

The implementation of BIM in the construction industry requires the coevolution of the various aspects of the BIM ecosystem. The human dimension is a very important dimension of…

1636

Abstract

Purpose

The implementation of BIM in the construction industry requires the coevolution of the various aspects of the BIM ecosystem. The human dimension is a very important dimension of the ecosystem necessary for BIM implementation. It is imperative to study this aspect of the BIM ecosystem both from the employer perspective and employee availability to provide insights for stakeholders (job seekers, employers, students, researchers, policymakers, higher education institutions, career advisors and curriculum developers) interested in the labour market dynamics.

Design/methodology/approach

To understand the BIM actor roles through the employer lens and the actual BIM actors in the construction industry, this study employed data mining of job adverts from LinkedIn and Mncjobs website. Content analysis was employed to gain insights into the data collected. Also, through a quantitative approach, the existing BIM actor roles were identified.

Findings

The study identified the employers' expectations of BIM actors; however, it is noted that the BIM actor recruitment space is still a loose one as recruiters put out open advertisements to get a large pool of applicants. From the data analysed, it is concluded that the BIM actor role is not an entirely new profession. However, it simply exists as construction industry professionals with BIM tool skills. Also, the professional development route is not well defined yet.

Originality/value

This study presents a realistic angle to BIM actor roles hence enhancing BIM implementation from the human perspective. The findings present an insight into the preferred against the actual.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 13
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 30 April 2024

Sulakshya Gaur and Abhay Tawalare

Design cost overrun is one of the prominent factor that can impact the sustainable delivery of the project. It can be encountered due to a lack of information flow, design…

Abstract

Purpose

Design cost overrun is one of the prominent factor that can impact the sustainable delivery of the project. It can be encountered due to a lack of information flow, design variation, etc. thereby impacting the project budget, waste generation and schedule. An overarching impact of this is witnessed in the sustainability dimensions of the project, mainly in terms of economic and environmental aspects. This work, therefore, aims to assess the implications of a technological process, in the form of building information modelling (BIM), that can smoothen the design process and mitigate the risks, thus impacting the sustainability of the project holistically.

Design/methodology/approach

The identified design risks in construction projects from the literature were initially analysed using a fuzzy inference system (FIS). This was followed by the focus group discussion with the project experts to understand the role of BIM in mitigating the project risks and, in turn, fulfilling the sustainability dimensions.

Findings

The FIS-based risk assessment found seven risks under the intolerable category for which the BIM functionalities associated with the common data environment (CDE), data storage and exchange and improved project visualization were studied as mitigation approaches. The obtained benefits were then subsequently corroborated with the achievement of three sustainability dimensions.

Research limitations/implications

The conducted study strengthens the argument for the adoption of technological tools in the construction industry as they can serve multifaceted advantages. This has been shown through the use of BIM in risk mitigation, which inherently impacts project sustainability holistically.

Originality/value

The impact of BIM on all three dimensions of sustainability, i.e. social, economic and environmental, through its use in the mitigation of critical risks was one of the important findings. It presented a different picture as opposed to other studies that have mainly been dominated by the use of BIM to achieve environmental sustainability.

Details

Built Environment Project and Asset Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-124X

Keywords

Open Access
Article
Publication date: 12 May 2023

Olivia McDermott, Kevin ODwyer, John Noonan, Anna Trubetskaya and Angelo Rosa

This study aims to improve a construction company's overall project delivery by utilising lean six sigma (LSS) methods combined with building information modelling (BIM) to…

79362

Abstract

Purpose

This study aims to improve a construction company's overall project delivery by utilising lean six sigma (LSS) methods combined with building information modelling (BIM) to design, modularise and manufacture various building elements in a controlled factory environment off-site.

Design/methodology/approach

A case study in a construction company utilised lean six sigma (LSS) methodology and BIM to identify non-value add waste in the construction process and improve sustainability.

Findings

An Irish-based construction company manufacturing modular pipe racks for the pharmaceutical industry utilised LSS to optimise and standardise their off-site manufacturing (OSM) partners process and leverage BIM to design skids which could be manufactured offsite and transported easily with minimal on-site installation and rework required. Productivity was improved, waste was reduced, less energy was consumed, defects were reduced and the project schedule for completion was reduced.

Research limitations/implications

The case study was carried out on one construction company and one construction product type. Further case studies would ensure more generalisability. However, the implementation was tested on a modular construction company, and the methods used indicate that the generic framework could be applied and customized to any offsite company.

Originality/value

This is one of the few studies on implementing offsite manufacturing (OSM) utilising LSS and BIM in an Irish construction company. The detailed quantitative benefits and cost savings calculations presented as well as the use of the LSM methods and BIM in designing an OSM process can be leveraged by other construction organisations to understand the benefits of OSM. This study can help demonstrate how LSS and BIM can aid the construction industry to be more environmentally friendly.

Details

International Journal of Lean Six Sigma, vol. 15 no. 8
Type: Research Article
ISSN: 2040-4166

Keywords

Open Access
Article
Publication date: 13 September 2022

Oliver Disney, Mattias Roupé, Mikael Johansson and Alessio Domenico Leto

Building information modeling (BIM) is mostly limited to the design phase where two parallel processes exist, i.e. creating 2D-drawings and BIM. Towards the end of the design…

4239

Abstract

Purpose

Building information modeling (BIM) is mostly limited to the design phase where two parallel processes exist, i.e. creating 2D-drawings and BIM. Towards the end of the design process, BIM becomes obsolete as focus shifts to producing static 2D-drawings, which leads to a lack of trust in BIM. In Scandinavia, a concept known as Total BIM has emerged, which is a novel “all-in” approach where BIM is the single source of information throughout the project. This paper's purpose is to investigate the overall concept and holistic approach of a Total BIM project to support implementation and strategy work connected to BIM.

Design/methodology/approach

Qualitative data were collected through eight semi-structured interviews with digitalization leaders from the case study project. Findings were analyzed using a holistic framework to BIM implementation.

Findings

The Total BIM concept was contingent on the strong interdependences between commonly found isolated BIM uses. Four main success factors were identified, production-oriented BIM as the main contractual and legally binding construction document, cloud-based model management, user-friendly on-site mobile BIM software and strong leadership.

Originality/value

A unique case is studied where BIM is used throughout all project phases as a single source of information and communication platform. No 2D paper drawings were used on-site and the Total BIM case study highlights the importance of a new digitalized construction process.

Details

Smart and Sustainable Built Environment, vol. 13 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 2 May 2024

Jobaer Al Mahmud, Shamsul Arefin and Md Imtiaz Ahmmed

This study aims to examine the historical development, present state and potential future directions of the integration between building information modeling (BIM) and life cycle…

Abstract

Purpose

This study aims to examine the historical development, present state and potential future directions of the integration between building information modeling (BIM) and life cycle assessment (LCA) in the field of construction. Additionally, this paper identifies current problems while offering insight into worldwide BIM research trends.

Design/methodology/approach

This study uses text mining on unstructured abstracts, a novel approach not previously documented in BIM research. By conducting a comprehensive systematic assessment of academic literature, this work uses advanced bibliometric approaches to examine the developmental trajectory of the integration of BIM and LCA. The research incorporates co-citation and keyword co-occurrence mapping, providing a complex visual depiction of the interconnectedness of information across different periods.

Findings

The results of this analysis reveal the historical development of the integration of BIM and LCA, including its roots and the initial research that established the foundation for further investigations. The aforementioned seminal works signify the inception of the discipline, serving as a source of inspiration for current scholarly investigations. Currently, there is a complex network of interdisciplinary cooperation that can be observed, combining knowledge and perspectives from the fields of design, engineering, construction and sustainability.

Originality/value

This research contributes novelty to the scholarly discourse by offering a holistic and up-to-date panorama of the dynamic BIM and LCA research landscape. It identifies emerging trends, influential contributors and uncharted territories, thus providing a foundation for scholars to contribute meaningfully to the advancement of knowledge in sustainable construction practices.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 13 October 2022

Arka Ghosh, Jemal Abawajy and Morshed Chowdhury

This study aims to provide an excellent overview of current research trends in the construction sector in digital advancements. It provides a roadmap to policymakers for the…

Abstract

Purpose

This study aims to provide an excellent overview of current research trends in the construction sector in digital advancements. It provides a roadmap to policymakers for the effective utilisation of emergent digital technologies and a need for a managerial shift for its smooth adoption.

Design/methodology/approach

A total of 3,046 peer-reviewed journal review articles covering Internet of Things (IoT), blockchain, building information modelling (BIM) and digital technologies within the construction sector were reviewed using scientometric mapping and weighted mind-map analysis techniques.

Findings

Prominent research clusters identified were: practice-factor-strategy, system, sustainability, BIM and construction worker safety. Leading countries, authors, institutions and their collaborative networks were identified with the UK, the USA, China and Australia leading this field of research. A conceptual framework for an IoT-based concrete lifecycle quality control system is provided.

Originality/value

The study traces the origins of the initial application of Industry 4.0 concepts in the construction field and reviews available literature from 1983 to 2021. It raises awareness of the latest developments and potential landscape realignment of the construction industry through digital technologies conceptual framework for an IoT-based concrete lifecycle quality control system is provided.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 7 May 2024

Yazeed A. Alragabah and Mohd. Ahmed

There is a limited number of research work on critical success factors (CSFs) in public construction projects in Saudi Arabia. In response to this knowledge gap, the objective of…

Abstract

Purpose

There is a limited number of research work on critical success factors (CSFs) in public construction projects in Saudi Arabia. In response to this knowledge gap, the objective of this paper is to assess the impact of CSFs on the government construction projects in Saudi Arabia. The success factors are investigated from a broader consideration of failure criteria, from consideration of most effectiveness in successful project completion and also from consideration of the impact of implementing control processes for successful project completion.

Design/methodology/approach

This study has analysed the impact of success factors on construction projects in Saudi Arabia using a descriptive methodology. An exhaustive literature survey is undertaken to identify the success and failure factors related to government construction projects in Saudi Arabia. The survey data are sorted out and analysed by cost, schedule, technical, context and finance dimensions of the projects based on project types, engineering complexity, size, modality, jurisdictional control and funding approach. To evaluate the influence of success factors implementation, qualitative data were collected in a survey via a web-based questionnaire that was sent to officials working and occupying a responsible position in national project guidelines organizations and in government construction organizations in Saudi Arabia. In all, 28 CSFs were identified, ranked and evaluated for their impact on project success. The four identified factors belong to process categories of construction projects, nine factors belong to management of construction projects and 15 success factors are identified for impact assessment of implementation in construction projects.

Findings

The study's findings have identified and ranked the top five CSFs that significantly influence project outcomes, including meeting time targets, adhering to financial budgets, delivering desired outcomes for all stakeholders, effectively managing risks and assembling the appropriate team while optimizing resource allocation. Additionally, the research indicates that hindrances to projects primarily stem from execution, economic, human and political factors. The study advocates for strict controls over incomplete engineering designs and advises against contractors independently handling design work to ensure project success. Additionally, addressing contractors' qualifications and financial matters is crucial for project success. By highlighting these CSFs and challenges, the research provides actionable insights to enhance project management practices in the construction industry.

Research limitations/implications

This study is limited to the infrastructure projects constructed by governmental bodies with the participation of officials from government organizations. Further study, including private projects and officials working on private projects, may be needed to generalized the research outcome.

Originality/value

Numerous studies have investigated CSFs in construction projects, but few have examined their relevance to Saudi Arabian government projects. This study aims to fill this gap by identifying key CSFs specific to Saudi Arabian public sector construction projects and assessing their impact on project success. It advocates for stringent controls in the Saudi Arabian construction sector, emphasizing the importance of preventing incomplete or altered engineering designs by contractors to increase the success rate of public sector projects. This research offers practical insights to stakeholders, advancing project management practices in Saudi Arabia's construction sector for improved outcomes and resource utilization.

Details

Frontiers in Engineering and Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-2499

Keywords

Article
Publication date: 6 February 2024

Moslem Sheikhkhoshkar, Hind Bril El Haouzi, Alexis Aubry and Farook Hamzeh

In academics and industry, significant efforts have been made to lead planners and control teams in evaluating project performance and control. In this context, numerous control…

Abstract

Purpose

In academics and industry, significant efforts have been made to lead planners and control teams in evaluating project performance and control. In this context, numerous control metrics have been devised and put into practice, often with little emphasis on analyzing their underlying concepts. To cover this gap, this research aims to identify and analyze a holistic list of control metrics and their functionalities in the construction industry.

Design/methodology/approach

A multi-step analytical approach was conducted to achieve the study’s objectives. First, a holistic list of control metrics and their functionalities in the construction industry was identified. Second, a quantitative analysis based on social network analysis (SNA) was implemented to discover the most important functionalities.

Findings

The results revealed that the most important control metrics' functionalities (CMF) could differ depending on the type of metrics (lagging and leading) and levels of control. However, in general, the most significant functionalities include managing project progress and performance, evaluating the look-ahead level’s performance, measuring the reliability and stability of workflow, measuring the make-ready process, constraint management and measuring the quality of construction flow.

Originality/value

This research will assist the project team in getting a comprehensive sensemaking of planning and control systems and their functionalities to plan and control different dynamic aspects of the project.

Details

Smart and Sustainable Built Environment, vol. 13 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 30 April 2024

Elaine Pinto Varela Alberte and Gabriel de Oliveira Novelli

This paper aims to analyze practices, processes and outcomes related to construction supply chain management (CSCM) in Brazil to identify opportunities and direct actions and…

Abstract

Purpose

This paper aims to analyze practices, processes and outcomes related to construction supply chain management (CSCM) in Brazil to identify opportunities and direct actions and strategies to improve the Brazilian sector through blockchain technology (BT).

Design/methodology/approach

The study collected empirical data through semi-structured interviews with consumers and distributors to identify how the CSCM functions today. The interviews were structured and analyzed around the following topics: processes, digitalization, quality and weakness of the activities performed. The opportunities for using BT in CSCM were identified by crossing these results with evidence in the bibliography.

Findings

The study identified deficiencies, gaps and good practices applied to information management in the sector. Also, it analyzed the features, drivers and barriers of BT from a practical perspective. The findings suggested that BT is feasible and promising, reducing costs and enhancing process transparency. The need to overcome cultural and economic barriers is a challenging task.

Originality/value

This study brings a new perspective on using BT in CSCM, relating it to the demands and particularities of the construction sector in Brazil. The study identifies a limited panorama of chronic CSCM concerns, given BT’s infinite opportunities. And it motivates a gradual transition toward installing a new technological culture based on BT that focuses on priority care for the sector’s chronic deficiencies. The results can guide practical actions for the successful insertion of BT in the CSCM, laying the foundations for significant future research.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of 32