Search results

1 – 10 of 100
Content available
Book part
Publication date: 2 December 2019

Abstract

Details

How Do Leaders Make Decisions?
Type: Book
ISBN: 978-1-83867-812-8

Content available
Book part
Publication date: 23 September 2019

Abstract

Details

How Do Leaders Make Decisions?
Type: Book
ISBN: 978-1-78743-394-6

Open Access
Article
Publication date: 23 November 2021

Yueru Xu, Zhirui Ye and Chao Wang

Advanced driving assistance system (ADAS) has been applied in commercial vehicles. This paper aims to evaluate the influence factors of commercial vehicle drivers’ acceptance on…

990

Abstract

Purpose

Advanced driving assistance system (ADAS) has been applied in commercial vehicles. This paper aims to evaluate the influence factors of commercial vehicle drivers’ acceptance on ADAS and explore the characteristics of each key factors. Two most widely used functions, forward collision warning (FCW) and lane departure warning (LDW), were considered in this paper.

Design/methodology/approach

A random forests algorithm was applied to evaluate the influence factors of commercial drivers’ acceptance. ADAS data of 24 commercial vehicles were recorded from 1 November to 21 December 2018, in Jiangsu province. Respond or not was set as dependent variables, while six influence factors were considered.

Findings

The acceptance rate for FCW and LDW systems was 69.52% and 38.76%, respectively. The accuracy of random forests model for FCW and LDW systems is 0.816 and 0.820, respectively. For FCW system, vehicle speed, duration time and warning hour are three key factors. Drivers prefer to respond in a short duration during daytime and low vehicle speed. While for LDW system, duration time, vehicle speed and driver age are three key factors. Older drivers have higher respond probability under higher vehicle speed, and the respond time is longer than FCW system.

Originality/value

Few research studies have focused on the attitudes of commercial vehicle drivers, though commercial vehicle accidents were proved to be more severe than passenger vehicles. The results of this study can help researchers to better understand the behavior of commercial vehicle drivers and make corresponding recommendations for ADAS of commercial vehicles.

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 28 March 2022

Di Ao and Jialin Li

This study aims to propose a novel subjective assessment (SA) method for level 2 or level 2+ advanced driver assistance system (ADAS) with a customized case study in China.

1000

Abstract

Purpose

This study aims to propose a novel subjective assessment (SA) method for level 2 or level 2+ advanced driver assistance system (ADAS) with a customized case study in China.

Design/methodology/approach

The proposed SA method contains six dimensions, including perception, driveability and stability, riding comfort, human–machine interaction, driver workload and trustworthiness and exceptional operating case, respectively. And each dimension subordinates several subsections, which describe the corresponding details under this dimension.

Findings

Based on the proposed SA, a case study in China is conducted. Six drivers with different driving experiences are invited to give their subjective ratings for each subsection according to a predefined rating standard. The rating results show that the ADAS from Tesla outperforms the upcoming electric vehicle in most cases.

Originality/value

The proposed SA method is beneficial for the original equipment manufacturers developing related technologies in the future.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 14 February 2023

Kanthana Ditkaew and Muttanachai Suttipun

The main objective of this study is to examine the impact of audit data analytics (ADA) on audit quality (AQ) and audit review continuity (ARC).

5380

Abstract

Purpose

The main objective of this study is to examine the impact of audit data analytics (ADA) on audit quality (AQ) and audit review continuity (ARC).

Design/methodology/approach

Using 452 CPAs in Thailand as samples, mail questionnaires were used and sent to collect the data. Descriptive analysis, correlation matrix and path analysis were used to analyze the data.

Findings

The results of this study indicated that audit data analytics had a positive impact on AQ and ARC. Cybersecurity, used as a moderator in this study, was found to be the interaction between ADA, AQ and review continuity.

Practical implications

Auditors and audit firms can consider using big data in their data analytics to improve AQ and ARC.

Originality/value

Resource advantage theory has been used in this study to explain the impact of ADA on AQ and ARC in Thailand.

Details

Asian Journal of Accounting Research, vol. 8 no. 3
Type: Research Article
ISSN: 2459-9700

Keywords

Open Access
Article
Publication date: 11 July 2022

Afreen Khan, Swaleha Zubair and Samreen Khan

This study aimed to assess the potential of the Clinical Dementia Rating (CDR) Scale in the prognosis of dementia in elderly subjects.

Abstract

Purpose

This study aimed to assess the potential of the Clinical Dementia Rating (CDR) Scale in the prognosis of dementia in elderly subjects.

Design/methodology/approach

Dementia staging severity is clinically an essential task, so the authors used machine learning (ML) on the magnetic resonance imaging (MRI) features to locate and study the impact of various MR readings onto the classification of demented and nondemented patients. The authors used cross-sectional MRI data in this study. The designed ML approach established the role of CDR in the prognosis of inflicted and normal patients. Moreover, the pattern analysis indicated CDR as a strong cohort amongst the various attributes, with CDR to have a significant value of p < 0.01. The authors employed 20 ML classifiers.

Findings

The mean prediction accuracy varied with the various ML classifier used, with the bagging classifier (random forest as a base estimator) achieving the highest (93.67%). A series of ML analyses demonstrated that the model including the CDR score had better prediction accuracy and other related performance metrics.

Originality/value

The results suggest that the CDR score, a simple clinical measure, can be used in real community settings. It can be used to predict dementia progression with ML modeling.

Details

Arab Gulf Journal of Scientific Research, vol. 40 no. 1
Type: Research Article
ISSN: 1985-9899

Keywords

Content available
Article
Publication date: 15 November 2022

Matthew Powers and Brian O'Flynn

Rapid sensitivity analysis and near-optimal decision-making in contested environments are valuable requirements when providing military logistics support. Port of debarkation…

Abstract

Purpose

Rapid sensitivity analysis and near-optimal decision-making in contested environments are valuable requirements when providing military logistics support. Port of debarkation denial motivates maneuver from strategic operational locations, further complicating logistics support. Simulations enable rapid concept design, experiment and testing that meet these complicated logistic support demands. However, simulation model analyses are time consuming as output data complexity grows with simulation input. This paper proposes a methodology that leverages the benefits of simulation-based insight and the computational speed of approximate dynamic programming (ADP).

Design/methodology/approach

This paper describes a simulated contested logistics environment and demonstrates how output data informs the parameters required for the ADP dialect of reinforcement learning (aka Q-learning). Q-learning output includes a near-optimal policy that prescribes decisions for each state modeled in the simulation. This paper's methods conform to DoD simulation modeling practices complemented with AI-enabled decision-making.

Findings

This study demonstrates simulation output data as a means of state–space reduction to mitigate the curse of dimensionality. Furthermore, massive amounts of simulation output data become unwieldy. This work demonstrates how Q-learning parameters reflect simulation inputs so that simulation model behavior can compare to near-optimal policies.

Originality/value

Fast computation is attractive for sensitivity analysis while divorcing evaluation from scenario-based limitations. The United States military is eager to embrace emerging AI analytic techniques to inform decision-making but is hesitant to abandon simulation modeling. This paper proposes Q-learning as an aid to overcome cognitive limitations in a way that satisfies the desire to wield AI-enabled decision-making combined with modeling and simulation.

Details

Journal of Defense Analytics and Logistics, vol. 6 no. 2
Type: Research Article
ISSN: 2399-6439

Keywords

Open Access
Article
Publication date: 13 July 2022

Jiqian Dong, Sikai Chen, Mohammad Miralinaghi, Tiantian Chen and Samuel Labi

Perception has been identified as the main cause underlying most autonomous vehicle related accidents. As the key technology in perception, deep learning (DL) based computer…

Abstract

Purpose

Perception has been identified as the main cause underlying most autonomous vehicle related accidents. As the key technology in perception, deep learning (DL) based computer vision models are generally considered to be black boxes due to poor interpretability. These have exacerbated user distrust and further forestalled their widespread deployment in practical usage. This paper aims to develop explainable DL models for autonomous driving by jointly predicting potential driving actions with corresponding explanations. The explainable DL models can not only boost user trust in autonomy but also serve as a diagnostic approach to identify any model deficiencies or limitations during the system development phase.

Design/methodology/approach

This paper proposes an explainable end-to-end autonomous driving system based on “Transformer,” a state-of-the-art self-attention (SA) based model. The model maps visual features from images collected by onboard cameras to guide potential driving actions with corresponding explanations, and aims to achieve soft attention over the image’s global features.

Findings

The results demonstrate the efficacy of the proposed model as it exhibits superior performance (in terms of correct prediction of actions and explanations) compared to the benchmark model by a significant margin with much lower computational cost on a public data set (BDD-OIA). From the ablation studies, the proposed SA module also outperforms other attention mechanisms in feature fusion and can generate meaningful representations for downstream prediction.

Originality/value

In the contexts of situational awareness and driver assistance, the proposed model can perform as a driving alarm system for both human-driven vehicles and autonomous vehicles because it is capable of quickly understanding/characterizing the environment and identifying any infeasible driving actions. In addition, the extra explanation head of the proposed model provides an extra channel for sanity checks to guarantee that the model learns the ideal causal relationships. This provision is critical in the development of autonomous systems.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 8 August 2022

Ying Li, Li Zhao, Kun Gao, Yisheng An and Jelena Andric

The purpose of this paper is to characterize distracted driving by quantifying the response time and response intensity to an emergency stop using the driver’s physiological…

Abstract

Purpose

The purpose of this paper is to characterize distracted driving by quantifying the response time and response intensity to an emergency stop using the driver’s physiological states.

Design/methodology/approach

Field tests with 17 participants were conducted in the connected and automated vehicle test field. All participants were required to prioritize their primary driving tasks while a secondary nondriving task was asked to be executed. Demographic data, vehicle trajectory data and various physiological data were recorded through a biosignalsplux signal data acquisition toolkit, such as electrocardiograph for heart rate, electromyography for muscle strength, electrodermal activity for skin conductance and force-sensing resistor for braking pressure.

Findings

This study quantified the psychophysiological responses of the driver who returns to the primary driving task from the secondary nondriving task when an emergency occurs. The results provided a prototype analysis of the time required for making a decision in the context of advanced driver assistance systems or for rebuilding the situational awareness in future automated vehicles when a driver’s take-over maneuver is needed.

Originality/value

The hypothesis is that the secondary task will result in a higher mental workload and a prolonged reaction time. Therefore, the driver states in distracted driving are significantly different than in regular driving, the physiological signal improves measuring the brake response time and distraction levels and brake intensity can be expressed as functions of driver demographics. To the best of the authors’ knowledge, this is the first study using psychophysiological measures to quantify a driver’s response to an emergency stop during distracted driving.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 27 December 2021

Nengchao Lyu, Yugang Wang, Chaozhong Wu, Lingfeng Peng and Alieu Freddie Thomas

An individual’s driving style significantly affects overall traffic safety. However, driving style is difficult to identify due to temporal and spatial differences and scene…

1589

Abstract

Purpose

An individual’s driving style significantly affects overall traffic safety. However, driving style is difficult to identify due to temporal and spatial differences and scene heterogeneity of driving behavior data. As such, the study of real-time driving-style identification methods is of great significance for formulating personalized driving strategies, improving traffic safety and reducing fuel consumption. This study aims to establish a driving style recognition framework based on longitudinal driving operation conditions (DOCs) using a machine learning model and natural driving data collected by a vehicle equipped with an advanced driving assistance system (ADAS).

Design/methodology/approach

Specifically, a driving style recognition framework based on longitudinal DOCs was established. To train the model, a real-world driving experiment was conducted. First, the driving styles of 44 drivers were preliminarily identified through natural driving data and video data; drivers were categorized through a subjective evaluation as conservative, moderate or aggressive. Then, based on the ADAS driving data, a criterion for extracting longitudinal DOCs was developed. Third, taking the ADAS data from 47 Kms of the two test expressways as the research object, six DOCs were calibrated and the characteristic data sets of the different DOCs were extracted and constructed. Finally, four machine learning classification (MLC) models were used to classify and predict driving style based on the natural driving data.

Findings

The results showed that six longitudinal DOCs were calibrated according to the proposed calibration criterion. Cautious drivers undertook the largest proportion of the free cruise condition (FCC), while aggressive drivers primarily undertook the FCC, following steady condition and relative approximation condition. Compared with cautious and moderate drivers, aggressive drivers adopted a smaller time headway (THW) and distance headway (DHW). THW, time-to-collision (TTC) and DHW showed highly significant differences in driving style identification, while longitudinal acceleration (LA) showed no significant difference in driving style identification. Speed and TTC showed no significant difference between moderate and aggressive drivers. In consideration of the cross-validation results and model prediction results, the overall hierarchical prediction performance ranking of the four studied machine learning models under the current sample data set was extreme gradient boosting > multi-layer perceptron > logistic regression > support vector machine.

Originality/value

The contribution of this research is to propose a criterion and solution for using longitudinal driving behavior data to label longitudinal DOCs and rapidly identify driving styles based on those DOCs and MLC models. This study provides a reference for real-time online driving style identification in vehicles equipped with onboard data acquisition equipment, such as ADAS.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 1
Type: Research Article
ISSN: 2399-9802

Keywords

1 – 10 of 100