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Abstract
Purpose – An individual’s driving style significantly affects overall traffic safety. However, driving style is difficult to identify due to temporal and
spatial differences and scene heterogeneity of driving behavior data. As such, the study of real-time driving-style identification methods is of great
significance for formulating personalized driving strategies, improving traffic safety and reducing fuel consumption. This study aims to establish a
driving style recognition framework based on longitudinal driving operation conditions (DOCs) using a machine learning model and natural driving
data collected by a vehicle equipped with an advanced driving assistance system (ADAS).
Design/methodology/approach – Specifically, a driving style recognition framework based on longitudinal DOCs was established. To train the
model, a real-world driving experiment was conducted. First, the driving styles of 44 drivers were preliminarily identified through natural driving
data and video data; drivers were categorized through a subjective evaluation as conservative, moderate or aggressive. Then, based on the ADAS
driving data, a criterion for extracting longitudinal DOCs was developed. Third, taking the ADAS data from 47 Kms of the two test expressways as
the research object, six DOCs were calibrated and the characteristic data sets of the different DOCs were extracted and constructed. Finally, four
machine learning classification (MLC) models were used to classify and predict driving style based on the natural driving data.
Findings – The results showed that six longitudinal DOCs were calibrated according to the proposed calibration criterion. Cautious drivers
undertook the largest proportion of the free cruise condition (FCC), while aggressive drivers primarily undertook the FCC, following steady condition
and relative approximation condition. Compared with cautious and moderate drivers, aggressive drivers adopted a smaller time headway (THW) and
distance headway (DHW). THW, time-to-collision (TTC) and DHW showed highly significant differences in driving style identification, while
longitudinal acceleration (LA) showed no significant difference in driving style identification. Speed and TTC showed no significant difference
between moderate and aggressive drivers. In consideration of the cross-validation results and model prediction results, the overall hierarchical
prediction performance ranking of the four studied machine learning models under the current sample data set was extreme gradient boosting >
multi-layer perceptron > logistic regression > support vector machine.
Originality/value – The contribution of this research is to propose a criterion and solution for using longitudinal driving behavior data to label
longitudinal DOCs and rapidly identify driving styles based on those DOCs and MLC models. This study provides a reference for real-time online
driving style identification in vehicles equipped with onboard data acquisition equipment, such as ADAS.
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1. Introduction

Driving style can be defined as an individual’s habitual manner
of driving (Elander et al., 1993; Lajunen and Özkan, 2011;
Sagberg et al., 2015) (i.e. a person’s preference of velocity
distribution), which is formed over time as that person
accumulates driving experience (Suzdaleva and Nagy., 2018).
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Studies also explicitly describe the importance of acceleration
behavior as a key indicator of driving style because individuals
have different preferences for speed (Müller et al., 2013; Reiser,
2008). To differentiate between driving skill and driving style
(Elander et al., 1993; Taubman-Ben-Ari et al.,2004), “skill” is
defined as the driver’s ability to maintain control of the vehicle
and adapt to complex traffic conditions, and driving skill is
expected to improve with practice or training. On the other
hand, “style” is defined as themanner in which a driver chooses
to drive or habitually drives (i.e. his/her choice of driving speed
and headway).
A number of studies have shown that driving style has a

significant impact on traffic safety (Evans, 1996), vehicle
dynamics control (Plöchl et al., 2007) and the economic and
ecological efficiency of driving (Mensing et al., 2014). However,
driving style information cannot be directly measured nor
detected. Existing studies have categorized driving behavior into
driving maneuvers (e.g. following, hard braking, lane changing,
etc.) (Bellem et al., 2016). These studies estimate driving style
in terms of the durations or frequencies of individual maneuver
states. However, driving style is easily affected by and fluctuates
with the road traffic environment. Additionally, relatively static
and singular driving data does not fully reflect the true driving
style. On the other hand, one of the main factors affecting the
identification of driving style is the real-time ability and
effectiveness of data acquisition. Therefore, how to effectively
use driving data to comprehensively and quantitatively analyze
driving style has become a new field to be further explored (Qi
et al., 2019).
In recent years, advanced driving assistance systems

(ADASs) have significantly progressed, opening novel horizons
in reducing traffic accidents (Rezaei et al., 2021). Specifically,
with the rapid development of in-vehicle information systems
and collision warning systems, a large amount of natural driving
data can be acquired through these types of ADASs (Bao et al.,
2020; Orlovska et al.,2020). In response to the great need of
driving style identification for traffic safety and fuel economy,
naturalistic data collection is becoming ever more feasible as
the penetration rate of ADASs increases in vehicles and on
roadways around theworld.
Therefore, to explore the influence of different driving

behavior data on driving style identification and realize the
rapid and efficient detection of driving style, this study obtained
a large amount of naturalistic driving data through an ADAS-
equipped vehicle and proposes a solution framework for rapid
detection of driving style based on the driver’s longitudinal
driving operation conditions (DOCs). The proposed
framework calibrates the driver’s DOCs through naturalistic
driving data and rapidly detects driving style through amachine
learning model according to the driving behavior parameter
characteristics of different DOCs. To achieve the main goal of
this research, 44 subjects participated in naturalistic driving
experiments and data from the driver characteristics, vehicle
motion attitude andmicro driving operation was collected. The
framework for rapid identification of driving styles proposed in
this research may be applied in intelligent connected and
vehicle-road cooperative scenarios, providing a reference for
real-time and efficient identification of driving style to help
drivers make real-time driving decisions.

2. Literature review

In recent years, to discover and present driving style
information in a scientific method, many models have been
developed that assess driving style from different aspects. Since
its publication, the multidimensional driving style inventory
(MDSI) (Taubman-Ben-Ari et al., 2004) has been the subject
of research around the world. It defines an individual’s driving
style as a driving-specific factor that can contribute to both
crashes and traffic violations directly and in terms of more
general socio-demographic and personal factors. The MDSI
can increase driver awareness of his/her own and others’ driving
styles and be used to identify baseline driving styles prior to the
implementation of road safety interventions as well as inform
post-intervention assessments (Taubman-Ben-Ari et al., 2016).
To determine whether the MDSI is consistent with actual
driving behavior, Van Huysduynen et al. (2018) conducted a
simulation experiment with 88 participants. The objective data
retrieved from the simulator was compared with the scores
obtained from questionnaire data. The analysis showed that
there is a moderate correlation between self-reported driving
style and driving behavior in the simulator. This suggests that
MDSI can be used as a diagnostic tool to identify typical
driving behaviors of individuals in driving simulators. Ishibashi
et al. (2007) developed a driving style questionnaire (DSQ) to
extract key indicators from self-reports and calibrate different
driving styles. However, the DSQ focuses more on preferences
for driving behavior, which is limited by sample characteristics
and structural validity (van Huysduynen et al., 2018). In other
words, theDSQ cannot fully describe an objective condition.
There have beenmany studies that classify driving style based

on actual vehicle operating parameters, such as naturalistic
driving and field operational tests (FOTs). For instance, Toledo
et al. (2008) developed pattern recognition algorithms to
identify more than 20 maneuvers (such as lane change and
sudden braking) using naturalistic driving data on different
roads; this information was collected by onboard data loggers.
On this basis, drivers were divided into three categories
combined with the weighted maneuvering frequency. The
results showed that thismethod effectively predicts driving style.
Wang et al. (2015) extracted emergency braking maneuver
features from naturalistic driving data. On this basis, a
classification regression tree model was established to estimate
driving style, and drivers were divided into three risk groups
according to nine rules. Xu et al. (2015) used naturalistic
driving data from American highways and adopted a neural
network (NN)model to divide driver styles into three types. In a
simulated scenario, Baer et al. (2011) rated five driving styles:
aggressive, anxious, economical, sensitive and calm.
Judging from the literature described above, it can be

observed that driving style classificationmethods and standards
are not uniform. That said, previous studies have found that in
naturalistic driving, drivers generically categorized as high-risk
drive faster, exhibit shorter time headways (THWs), brake
harder and change lanes more frequently than low-risk drivers
(Sagberg et al., 2015; Xiong et al.,2012). It was also found from
field operation tests that low-risk drivers engage in fewer risky
maneuvers (Simons-Morton et al., 2015; Kusano et al.,2015).
While the aforementioned studies did identify differences

between driving styles, they did not establish evaluation models
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to estimate driving style through different drivingmaneuvers. In
contrast, Guo and Fang (2013) classified drivers into three risk
groups by a K-means clustering method according to the
maneuvers detected from naturalistic driving data on different
roads in the USA; the authors established a logistic model to
predict driving style, which showed that the frequency of
emergency braking events was a valid indicator of high-risk
drivers. Li et al. (2017) proposed a new method to identify
driving style according to the transition patterns between
maneuvering states. Driving behavior in highway traffic
was divided into 12 maneuvering states. A conditional
likelihood maximization method was used to extract typical
maneuverability transfer patterns, which represented driving
styles from 144 probabilities and the selected features were
classified by a random forest algorithm. The results showed that
the transitions concerning five maneuver states – free driving,
approach, near following, constrained left lane changes and
constrained right lane changes – can reliably classify driving
style. Suzdaleva and Nagy (2018) proposed an online driving
style detection model based on both a normal component and
classification component mixed recursive Bayesian estimation.
Seven driving styles associated with fuel economy were
identified using an online estimation algorithm. That algorithm
can also be used to model and predict fuel consumption, speed,
throttle pedal position and gear selection. Lu et al. (2021) tried
to understand the influence of different driving styles (such as
cautious, normal and aggressive) on key variables (such as
speed) in traffic flow theory and revealed the influence on
network efficiency. The characteristics of different driving styles
were extracted from high-dimensional data clustering classes
and transformed into different vehicle-following models, which
were simulated in a SUMO traffic simulator.
The key to the modeling and analysis of driving style is the

extraction of driving maneuver features. Driving maneuvers are
mainly divided into longitudinal or lateral. Longitudinal
maneuvers include free driving, approaching, following,
opening and emergency braking. Longitudinal maneuvers are
classified according to the value of the THW, longitudinal
acceleration (LA) and the perception of changes in the outward
size of the vehicle ahead (Toledo et al., 2007).More specifically,
the THW and LA are commonly used to describe the following
maneuvers (Kondoh et al., 2008). Further, when rapid
deceleration is not occurring, a 3-s THWor less is considered to
be car-following (Kusano et al., 2015; Transportation Research
Board, The Highway Capacity Manual, 2010). In other words,
If the THW of the front and rear vehicles exceeds 3.0 s, it is
considered a free drive operation.
This study focuses on longitudinal driving behavior and

simplifies the impact of lateral driving behavior. The scope of
this study was based on an urban expressway with high traffic
flow and speed and the influence of acceleration and
deceleration during the process of vehicle following was
considered. According to the literature summary and the
understanding and analysis of naturalistic driving data, this
study took a 6.0-s THW as one of the criteria to indicate car-
following. The longitudinal driving data was extracted from
naturalistic driving data to classify different driving conditions,
and different machine learning models were selected to
construct driving style classificationmodels; the accuracy of the
variousmodels was then compared to find the best fit.

3. Data collection

3.1 Test equipment and test route
To obtain real and reliable driving data, in this study, an
automatic GAC Trumpchi passenger car equipped with FOT
data acquisition equipment, as shown in Figure 1, was used to
performFOTs on various types of roads inWuhan, China.
The multi-functional road test vehicle platform is shown in

Figure 1 and the data types and parameter descriptions
collected by each experimental equipment are shown in
Table 1.
The installation of all instruments and equipment did not

hinder normal driving, such that the driver could maintain a
naturalistic driving state. The sampling frequency of the in-
vehicle devices was 20�100 Hz and the sampling interval of all
devices was set to 0.1 s. The naturalistic driving data was
obtained in real time through the onboard laptop and the
driving video data was continuously stored in thememory card.
As shown in Figure 2, the experimental route consisted of

four sections. Detailed information for each section is provided
in Table 2.
As can be observed from Table 1, Section 2 was a highway

with dispersed traffic volume. During the FOT drives, the
traffic flow on this section was low and the traffic density was
sparse, such that the experimental vehicle was in a free-driving
state for a long time. As can also be observed, Section 4 was an
arterial with congested traffic volume. During the FOT drives,
this section of the road had a high traffic flow and density, such
that the experimental vehicle was in a car-following state for a
long time. Therefore, in both Sections 2 and 4, the motion
posture of the experimental vehicle was relatively stable; drivers
did not make any significant operations that would make
driving style identifiable.
On the contrary, Sections 1 and 3 were both expressways

with moderate traffic volume, and the road parameters were
similar. During the FOT drives, the traffic flow was moderate
and traffic density was balanced, such that the experimental
vehicle made a variety of motion postures, and the driver’s
operating characteristics were significantly different, rendering
driving style easily identifiable. Therefore, 47 Kms of Sections
1 and 3 were selected as the expressway test bed from which to
observe the naturalistic driving data.

3.2 Participants
This study mainly focused on model and data analysis. The
experiment was outdoor naturalistic driving, the experimental

Figure 1 Multi-functional road test vehicle platform
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road environment was good, the traffic volume was moderate
and the weather was sunny. During the whole process of the
experiment, an experimental assistant was arranged to monitor
the risk factors and explain the experimental requirements in
real time. The research plan was discussed with the research
group, and all participants were informed of the experimental
requirements and impacts.
Sample size selection is critical to obtaining sufficient

experimental data. If the sample size is too small, the reliability
of the results will be reduced and if the sample size is too large,
resources will be wasted. For this study, the correct sample size
was calculated based on expected variance, target confidence
and error margin according to reference (Zhao et al., 2020) as
follows:

N ¼ Z2s2=E2 (1)

where N is the sample size; Z is the standard normal
distribution statistic; s is the standard deviation; E is the
maximum error.
Generally, a significance level of 10% is chosen to reflect the

90% confidence level of the unknown parameter. In this study,
when the confidence level was 90%, Z = 1.25, s was 0.25�0.5
(Chow, 2007) and E = 10%. Therefore, the minimum sample
size required for calculation ranged from 10 to 39.

For this study, a total of 44 participants were recruited (female
= 19; male = 25). The participants’ age ranged from 22 to
55years old (mean = 32.8, SD = 8.2). Their driving experience
ranged from 2 to 18 years (mean = 6.9) and their total lifetime
driving mileage ranged from 400 to 400,000 Kms (mean =
110,000). The distribution of gender, age and experience of the
sample was consistent with the distribution of the general
driving population inChina.

3.4 Test process
In this study, naturalistic driving data was collected using a
single test vehicle and a continuous measurement method.
Each subject drove the test vehicle one time along the test road
during a weekday. To avoid traffic flow disturbance caused by
peak periods, the test was run between 09:00 to 16:00 (outside
of rush hour). Each test provided subjects with route guidance
only and did not interfere with their daily driving habits so as to
keep the subjects in a naturalistic driving state. The test data
was preprocessed to facilitate statistical analysis.

3.5 Data processing
The raw data collected by the natural driving experimental
platform and the other methods is shown in Table 2. Because
the original data collected by the onboard sensor inevitably
experienced defects, such as missing frames, discontinuity and
jump, it was necessary to clean and preprocess the original data
to ensure quality. Therefore, this study used cubic spline
interpolation to supplement the lost frames, filtered the noise
and corrected the jump data based on the Savitzky-Golay filter
and finally obtained accurate vehicle motion attitude.
The data collected in this study included driver attributes,

operation parameters and road characteristics, as shown in
Table 3. Driver attributes included driver ID, age and gender.
Operation parameters included speed, LA, THW, time to

Table 1 Original data collected by naturalistic driving experimental platform

Data acquisition equipment Data type Parameter

OBD-II Vehicle operation and kinematics data Speed, accelerator pedal opening, braking pressure,
steering wheel angle, steering wheel angular speed

Mobileye M630 Position information Distance from right and left lane line, THW
INS RT2500 Vehicle’s movement and longitude and latitude

information
Lateral acceleration, longitudinal acceleration,
longitude, latitude, yaw rate

IBEO LUX-4 LiDAR Forward target and road edge information Lateral and longitudinal distance of forward target,
lateral and longitudinal relative velocity of forward
target

MOVON camera Video information Driving video

Figure 2 Naturalistic driving experiment data acquisition equipment

Table 2 Detailed information for each section

Section Road type Speed limit (km/h) Lanes in each direction
Length
(km) Traffic volume

1 Expressway 70 3 13 Moderate
2 Highway 100–120 3–4 45 Dispersed
3 Expressway 80 3–4 34 Moderate
4 Arterial 40–60 2–3 12 Congested
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collision (TTC) and distance headway (DHW). Road
characteristics included road type and length.

3.6 Subjective driving style evaluation
As the DSQ uses subjective responses for driving style
calibration, the analysis results are not only limited by sample
characteristics and structural validity, but the data focuses
more on driving behavior preferences and cannot fully describe
a true objective driving condition. In this study, using the three-
point scale method (Li et al., 2017), three drivers with rich
driving experience (the actual driving mileage per person was
more than 60,000 Kms and the driving experience per person
was more than eight years) were selected as the scoring experts.
Driving style was scored according to the video data based on
three points, namely, 1 indicated a conservative driving style, 2
indicated a moderate driving style and 3 indicated an aggressive
driving style. The scoring rules were set as follows:

Score

¼

EA or EB or EC; j if EA ¼ EB ¼ EC

EA or EB; j if EA ¼ EB 6¼ EC; jEA � ECj � 1

EA or EC; j if EA ¼ EC 6¼ EB; jEA � EBj � 1

EB or EC; j if EB ¼ EC 6¼ EA; jEA � EBj � 1

rerate; j otherwise

8>>>>>><
>>>>>>:

(2)

whereEA is the scoring value of the first expert,EB is the scoring
value of the second expert and EC is the scoring value of the
third expert.
The results from the DSQ are shown in Figure 4. In total, 16

drivers were scored as cautious, 22 drivers were scored as
moderate and 6 drivers were scored as aggressive.

4. Method

4.1 Research strategy
In a naturalistic driving environment, due to the influence of
road conditions, traffic conditions, driver characteristics and
other impactful factors, drivers will make myriad operations,
such as accelerating, decelerating, parking, approaching,
following and more. However, because different drivers have
different driving styles, they make different operations under
the same conditions. Therefore, the driver’s operating
performance under these different driving conditions can be
used to identify that driver’s style.

Table 3 Data collection

Data structure Variable

Driver attribute data ID, age, gender,
Driving operation data Speed, THW, TTC, DHW, longitudinal

acceleration
Road data Type, length

Figure 3 Test route
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As shown in Figure 5, this research firstly identified different
driving styles and then labeled DOCs based on naturalistic
driving data. Then, operating parameters were extracted under
different DOCs and four machine learning classification
(MLC) methods were used to predict driving style; the
prediction performance of themodels was then evaluated.

4.2 Label method of driving operation conditions
Previous studies have shown that relative distance and relative
speed are two important indicators of longitudinal driving; they
can be used to simulate driver behavior by taking them as
elements of a regression function in longitudinal driving
scenarios and models (Itkonen et al., 2020). Therefore, in this
study, speed and THW were selected as the label basis of the

DOCs. The following sections discuss the DOC labels and the
labeling process is shown in Figure 6. The labeling of
longitudinal driving behavior conditions was performed in two
steps:

4.2.1 Label acceleration and deceleration segments
Taking an acceleration segment as an example, a sliding time
window was adopted. From the initial moment when the
vehicle entered the expressway, a fixed sampling threshold was
set to 50 frames.
As shown in Figure 7, the abscissa represents the number of

frames, and the ordinate represents the speed. Within the 50-
frames range of the sliding time window (t2,�t1 � 50), if the
speed increased, the driving segment of (t1, t2) was temporarily
marked as an accelerating segment, otherwise, the driving

Figure 4 Driving style labeled results

Figure 5 Research strategy of driving style identification
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segment of (t1, t2) was marked as a conventional driving
segment. If the speed decreased in the range of (t2, t3),
subsequent processing was required. The subsequent
processing followed key principles:
When the speed decreased at t2 but started to rise at t3 and

the speed reaches its peak at t4:
If t3, � t2 � 5, vt4 > vt2 , then (t1, t4) was marked as an

accelerating segment;

If t3,� t2> 5, t4,� t3� 50, then (t1, t2) and (t3, t4) were marked
as accelerating segments and (t1, t2) was marked as a
conventional driving segment for a further label;
If t3, � t2 > 5, t4, � t3 < 50, then (t1, t2) was marked as an

accelerating segment and (t2, t4) was marked as a conventional
driving segment for a further label.
Then, THW was used to determine whether the vehicle was

following a car in the time window and the driving segment was

Figure 6 Label process of DOCs

Figure 7 Schematic diagram of acceleration and deceleration segment label
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labeled as either a following acceleration condition (FAC) or a
free acceleration condition (FrAC). Because of the detection
equipment, a 0 in the THW data meant that there was no
leading vehicle and a non-zero meant that there was a leading
vehicle detected ahead. In addition, the accelerating segment
with THW� 6s was also marked as a FrAC because when
THW� 6, the vehicle was in a relatively safe driving state. The
label process for deceleration conditions was similar.

4.2.2 Label other conventional driving segments
The other conventional driving conditions included a free cruise
condition (FCC), following steady condition (FSC), relatively
distant condition (RDC) and a relative approximation
condition (RAC). The sliding window was used to identify and
label these continuous driving segments – all except for the
FCC, which was labeled based on a THW> 6s or THW = 0 –

and the threshold and methods were similar to the acceleration
label process described above. Within the sampling threshold,
an increasing or decreasingTHWwas determined and the FSC,
RDCandRACwere automatically labeled byMATLAB.
This study did not consider the impact of latitudinal vehicle

operations (i.e. lane-changing). Only longitudinal driving
conditions were considered. To sum up, the eight longitudinal
driving conditions are defined as follows.

The FrAC and FrDC indicate that the speed of the host vehicle
increased or decreased, respectively, within the sliding window
detection time of 50 frames and either no leading vehicle was in
front or the headway time between the front and rear vehicles
wasmore than 6.0 s.
The FAC and FDC (following deceleration condition)

indicate that the speed of the host vehicle increased or
decreased, respectively, within the sliding window detection
time of 50 frames and a leading vehicle was in front and the
headway between the front and rear cars was within 6.0 s.
The FCC indicates that the speed of the host vehicle changed

repeatedly within the sliding window detection time of 50
frames and either a leading vehicle was not detected in front or
the headway between the front and rear vehicles was more than
6.0 s.
The RDC and RAC indicate that the speed of the host

vehicle changed repeatedly and alternately within the sliding
window detection time of 50 frames and a leading vehicle was
in front and the headway of the front and rear vehicles was
within 6.0 s. Within the 50-frame sliding window detection
time, the headway time showed an increasing RAC or a
decreasing RDC.
The FSC indicates that the speed of the host vehicle changed

repeatedly within the sliding window detection time of 50
frames and there was a leading vehicle in front and the headway

Figure 8 Acceleration and deceleration segment label
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Figure 9 The label result of longitudinal DOCs

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
 Frames 10 4

0

10

20

30

40

50

60

70

80

90

100

Sp
ee

d

Speed

DOC

5
0

1

2

3

4

5

6

7

8

9

10

Naturalistic driving data

Nengchao Lyu et al.

Journal of Intelligent and Connected Vehicles

Volume 5 · Number 1 · 2022 · 17–35

24



between the front and rear vehicles was within 6.0 s. Within the
sliding window detection time of 50 frames, the headway time
showed repeated and alternate changes.

4.2.4Measurement of index
Drawing on the 10 observable driving style indices described in
existing literature (Itkonen et al., 2020), the longitudinal
driving behavior analysis indices and particular index
measurement, including speed (V), LA, THW, the count
backward of TTC and DHW, were selected to characterize the
driving style. For each driving condition, the index
measurement was different. For example, for FCC, because
only parameters of the vehicle were relevant, only speed and LA
were calculated. The particular analysis indices and index
measurement values of theDOCs are shown inTable 4.
The studied naturalistic driving data was captured from 44

participants driving on experimental road section 1 and
experimental road section 3. The speed limit of road 1 was
70Km/h and the speed limit of road 3 was 80Km/h. In
addition, the length of the two roads and the traffic flow on each
road also differed, as observed through video. Therefore, to
ensure high quality data analysis, the data of roads 1 and 3 were
divided into independent analysis units and data from the
whole process of driving on each section from the beginning to
the exit was divided into small units with equal time intervals
according to t = 600 frames. Then, the statistical index values
in the small units that were split in different sections were
analyzed, as shown in Table 3. Fragmented data less than
10min was removed and subsequent analysis was not carried
out. In this way, the naturalistic driving data from the 44 drivers
on the two tested expressways was divided into 229 driving
segments, and all the statistical analysis indicators were
summarized to form a 229� 211 driving condition index
analysis matrix.

4.3Machine learning classificationmethods
This study aimed to test the feasibility of using longitudinal
DOCs to identify driving styles through MLC algorithms. To
achieve these goals and based on previous literature, it was
found that MLC models, namely, SVM, XGB, LR and MLP,
have shown relatively good predictive performance in existing
practical applications. Therefore, this study evaluated the
prediction performance of these four machine learning models
based on the label analysis of theDOCs:
(1) Support vector machines (SVMs):

Support vector machines (SVM) are one of the most widely
used supervised classification methods in the field of machine

learning and artificial intelligence. The SVM proposed by
Cortes and Vapnik made full use of the structural risk
minimization theory, thus ensuring the strong generalization
ability of the model (Cortes and Vapnik., 1995). SVMs are a
supervised learning method to predict the labels of points in the
test data set by learning the model of the training data set. This
method is well-known in computer science and has been widely
used in the field of transportation engineerings, such as traffic
accident prediction (Tang et al., 2020; Zhang et al.,2018), road
risk prediction (Basso et al., 2018), vehicle trajectory state
recognition (Siddique et al., 2019) and path selection (Sun
et al., 2017), driving behavior prediction (Wang et al., 2017)
and driving state recognition (Chai et al., 2019; Allahviranloo,
2013). SVMs have generally good predictive performance.
(2) Extreme gradient boosting (XGB):

XGB is an integrated machine learning model based on many
decision trees that use an optimized gradient boosting system.
It has the advantages of performing parallel processing,
approximate greedy search and improving the learning process
in the shortest time without overfitting. It has been proven that
XGB has superior predictive performance and processing time
compared with the random forest model (Chen and Boost,
2016). In recent years, XGB models have been proven to have
good performance in traffic flow prediction (Mahmoud et al.,
2021), rail defects prediction (Mohammadi et al., 2019),
driving behavior prediction (Ayoub et al., 2021) and road risk
identification and prediction (Das et al., 2020).
(3) Logistic regression (LR):

LR is generally used to model the relationship between a
categorical dependent variable and categorical/dichotomous/
continuous independent variables. These models predict the
probability of occurrence of the dependent variable using a set
of given independent variables (Venkata et al., 2020). LR is a
generalized linear model and has been widely used in accident
prediction (Venkata et al., 2020; Dong et al.,2018) and conflict
risk prediction (Costela et al., 2020) in traffic safety research. At
the same time, it is used in traffic system performance tests
(Cafiso et al., 2020; Liu et al.,2018) and behavior prediction
(Farooq et al., 2021; Ghasemzadeh et al., 2018).
(4) Multi-layer perceptron (MLP):

The use of NNs and deep learning optimization algorithms to
enhance discrete selection models is an active research area,
which has shown encouraging results (Zargarnezhad et al.,
2019). In recent years, experimental cases of deep learning
methods in discrete choice models have been explored, such as
personal travel mode prediction (Omrani, 2015), path tracking
prediction (Ge et al., 2021), driving behavior feature
recognition (Jasper et al., 2018) and more. As a basic three-
layered back-propagation MLP model was used to develop the
first NN (Clark, 1993), MLP has been developed into a novel
non-parametric approach based on an MLP NN and has been
demonstrated to be successful in complex behavioral data
modeling (Costa et al., 1997).

4.4Model prediction performance evaluation
After parameter adjustment and model training, it was
necessary to evaluate the generalization ability of the model on
an independent test set. To evaluate the performance of the
prediction model, a confusion matrix was introduced. Taking

Table 4 The measures of driving style used in the analysis

DOCs
Analysis
index Measurement of index

FrAC,
FrDC, FAC,
FDC, FSC,
RDC, RAC

V, LA, THW,
TTC-1, DHW

Mean, standard deviation, quartile
(15%, 50%, 85%), mode (except the
parameter of TTC-1), maximum,
minimum

FCC V, LA Mean, standard deviation, quartile
(15%, 50%, 85%), mode, maximum,
minimum
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the dichotomy problem as an example, the confusion matrix is
shown inTable 5.
True positive indicates that the number of the true value was

positive and the predicted value was positive. False negative
indicates that the number of the true value was positive, but the
predicted value was negative. False positive indicates that
the number of the true value was negative, but the predicted
value was positive. True negative indicates that the number of
the true value was negative and the predicted valuewas negative.
The indicators of accuracy (ACC), precision (PPV),

sensitivity or recall rate (TPR), FPR, specificity TNR and the
F1-score were used to evaluate the performance of the models.
The calculation formula and meaning of the evaluation indices
are shown inTable 6.

5. Results

5.1 Calibration results of longitudinal driving operation
conditions
Naturalistic driving data from 47 Kms of the expressway (test
route 1 and 3) was extracted and the label method described in
the previous section was used to identify the DOCs from 44
drivers on the tested expressway. Figure 10 describes theDOCs
frequency distribution fromdifferent drivers. It can be observed
that unlike the label results on the entire experimental section,
only six DOCs, namely, FAC, FDC, FCC, RDC, RAC and
FSC, appeared on the expressway for all drivers, while FrAC
and FrDC did not appear at all. By definition, FrAC and FrDC
generally do not appear on expressways and by reviewing the
natural driving video data, it was also confirmed that FrAC and
FrDC are not present on the tested expressway.

It can be observed in Table 7 that the FCC occurred most
frequently, indicating that, when driving on the expressway,
drivers were most likely to adopt FCC and less likely to adopt
FAC and FDC. The reason may be that when formulating the
criteria for labeling the DOCs, the model was established based
on the naturalistic driving data of the entire experimental road
section. The data input took into account driving data from
multiple types of roads, whereas only two types of roads were
actually analyzed. In addition, the overall law of DOCs
distribution among all drivers was roughly the same, but the
mean and variance of each DOC ratio were different, which
reflects the heterogeneity of the frequency distribution of the
differentDOCs.

5.2 Driving style identification with different machine
learning classificationmethods
With reference to the four machine learning models, a sample
set was established to distinguish driving style. The difference
in this study is that the samples were divided into driving style
labels – namely, conservative driving style, moderate driving
style and aggressive driving style – in the data aggregation stage.
The sample set was divided into 70% training set and 30% test
set. At the data level, the problem of the imbalanced number of
samples for conservative drivers, moderate drivers and
aggressive drivers was addressed. The ENN method was used
to undersample the normal samples in the training set. Then,
the five-fold cross-validation method was used to train and
verify the data of the training set and finally the model was
tested on an independent test set. Table 8 shows the confusion
matrix predicted by the establishedmodel to distinguish driving
style on the independent test set. The values in Table 8
represent the number of driving segments in the test set.
Table 9 shows that the MLP model had the highest overall

accuracy. The most accurate prediction models of aggressive
driving style, moderate driving style and conservative driving
style were XGB, MLP, MLP (PPVAggressive ¼ 1:000;
PPVOrdinary ¼ 0:659; PPVConservative ¼ 0:867Þ, respectively.
From the perspective of sensitivity (TPR), the detection rate of
moderate driving style was higher than that of aggressive
driving style and conservative driving style. This shows that
these models had better predictive ability for moderate driving

Table 5 Confusion matrix

Predictive value
Positive Negative

Real value
Positive TP FN
Negative FP TN

Table 6 Model prediction result evaluation index

Evaluation index Formula Meaning

Accuracy (ACC)
ACC ¼ TP

TP1 TN1 EP1 FN
The proportion of all the correct results of the classification model to the total observed values

Precision (PPV) PPV ¼ TP
TP1 FP

Among all the results where the model prediction was positive, the proportion of correct model
predictions

Sensitivity (TPR) TPR ¼ TP
TP1 FN

Among all the results where the true value was positive, the proportion of correct model
predictions

False positive (FPR) FPR ¼ FP
FP1 TN

Among all the results that the true value was negative, the proportion that was incorrectly
predicted

Specificity (TNR) TNR ¼ TN
TN1 FP

Among all the results where the true value was negative, the proportion of correct model
predictions

F1-score Score ¼ TP
TP1 FN1 FPð Þ=2 Integrate the results of precision and recall’s output. The value ranged from 0 to 1. 1 represents

the best output of the model, and 0 represents the worst
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styles. The FPR of moderate driving style was higher than that
of aggressive driving style and conservative driving style. In the
point of view of the F1-score, apart from the LR model, the

other prediction results exceeded 0.5, indicating that the overall
output performance of themodel was general under this sample
size. Because it was difficult to clearly define a moderate driving
style, its recognition rate was not high, which affected the
overall recognition level of all themodels.
Table 9 also shows that, under the current sample size, a

small number of extracted longitudinal driving conditions can
be used to effectively identify driving styles through MLC
models, and with the increase of sample size, the accuracy of
driving style identification will significantly improve. However,
different MLC models differ in performance in the
identification of driving style. It was found that the four models

Figure 10 Frequency cumulative distribution of different DOCs

Table 7 Statistical analysis of different longitudinal DOCs

DOC FAC FDC FCC FSC RDC RAC

Mean (%) 6.27 3.78 44.61 13.50 12.61 19.24
Median (%) 6.00 3.66 42.30 13.30 12.61 19.47
Standard deviation 2.39 1.56 14.28 6.21 5.95 8.16
Minimum (%) 2.40 1.17 19.77 0.12 0.18 0.12
Maximum (%) 13.26 8.58 85.90 35.12 31.95 34.68
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all showed good performance in the prediction of driving style.
However, in terms of accuracy, precision, recall and F1-score,
theMLPmodel had the best prediction results.

6. Discussion

6.1 Statistical analysis of parameters based on different
driving styles
According to the calibration results of the DOCs, a scatter
diagram of average longitudinal driving behavior parameters
was drawn, as shown in Figure 11. It can be observed that the
scatter distribution of THW and DHW was significantly
different.
Compared with cautious and moderate drivers, aggressive

drivers adopted a smaller THW and DHW during the natural
driving experiment, indicating that THW and DHW showed
high significance for the identification of driving style.
However, the significance of the other three parameters for the
identification of driving style needed to be further analyzed.
According to normality and lognormality tests, it was found

that the longitudinal driving behavior parameters of different
driving styles do not conform to the Gaussian distribution.
Therefore, a non-parametric test was adopted to analyze the
correlation of longitudinal driving behavior parameters to
different driving styles. As the number of drivers who exhibited
different driving styles was imbalanced, as were the different
DOCs parameters, the sample size of each group was
asymmetrical. Therefore, the Kruskal Wallis test method was
used for a non-parametric one-way ANOVA of the population
sample. Meanwhile, Dunn’s Multiple Index test method was
also selected for the non-parametric one-way ANOVA
comparative analysis of driving data from drivers who exhibited
different driving styles. The results are shown inTable 10.

The four longitudinal driving behavior parameters of speed,
THW, TTC and DHW showed significant differences in
driving style identification, while the LA showed no significant
difference in driving style identification. In particular, THW,
TTC and DHW showed highly significant differences in
driving style identification. This also indicated that the driver’s
subjective perception of LA during natural driving was far
less strong than the objective factors of speed, THW, TTC
and DHW. This distinction is useful for ADAS-equipped
vehicles, which can display THW, TTC and DHW in real time
through the onboard intelligent display terminal, so that drivers
can easily respond to this data and adopt different driving
strategies – also in real time.
From the results of multiple comparison analyzes, LA

showed no significant difference between the three driving
styles. At the same time, speed and TTC showed no significant
difference between moderate and aggressive drivers. This also
indirectly shows that there was little difference between
moderate and aggressive drivers.

6.2 Statistical analysis of parameters based on different
longitudinal driving operation conditions
Based on the 229 segments of naturalistic driving data, the box
plots of the mean values of speed, LA, THW, TTCi and DHW
were drawn according to the six DOCs, as shown in Figure 12.
It should be noted that the FCC lacked the statistics of THW,
TTCi andDHW.
It can be observed in Figure 12 that, among all the DOCs,

the mean speed of the FDCwas the lowest (FAC = 54.3Km/h,
FDC = 42.4Km/h, FCC = 47.3Km/h, FSC = 57.5Km/h,
RDC = 58.3Km/h and RAC = 60.1Km/h). This shows that
when drivers were in the FDC, most drove at a low following

Table 8 Different machine learning model prediction results

SVM XGB
Predictive value Predictive value

Aggressive Moderate Conservative Aggressive Moderate Conservative

Real value
Aggressive 5 4 0 Aggressive 3 6 0
Moderate 1 30 2 Moderate 0 27 6
Conservative 0 17 10 Conservative 0 13 14

LR MLP
Predictive value Predictive value

Aggressive Moderate Conservative Aggressive Moderate Conservative
Real value
Aggressive 2 6 1 Aggressive 6 2 1
Moderate 3 23 7 Moderate 3 29 1
Conservative 1 15 11 Conservative 1 13 13

Table 9 The prediction results of different machine learning models

Driving style Aggressive Moderate Conservative
Evaluation index PPV TPR FPR TNR F1-Score PPV TPR FPR TNR F1-Score PPV TPR FPR TNR F1-Score ACC

SVM 0.833 0.556 0.017 0.983 0.667 0.588 0.909 0.583 0.417 0.714 0.833 0.37 0.048 0.952 0.513 0.652
XGB 1.000 0.333 0 1.000 0.500 0.587 0.818 0.528 0.472 0.684 0.700 0.519 0.143 0.857 0.596 0.638
LR 0.333 0.222 0.067 0.933 0.267 0.523 0.697 0.583 0.417 0.597 0.579 0.407 0.190 0.810 0.478 0.522
MLP 0.600 0.667 0.067 0.933 0.631 0.659 0.879 0.417 0.583 0.753 0.867 0.481 0.048 0.952 0.619 0.696
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speed to maintain safety. However, the average speed was
higher in the FAC, which indicates that the following vehicle
accelerated when the lead vehicle accelerated. The speed
distribution of the FSC, RDC and RACwas relatively uniform.
The FCC had the largest range of speed fluctuations. This may
be related to the fact that the vehicle entered an expressway
from an urban road with a relatively low average speed. During
this process, vehicles were required to accelerate.
The average value of LA of FAC and FDC had similar

distributions and the average absolute value of the LA between
FAC and FDC (FAC = 0.42, FDC = 0.47) had little
difference, but the absolute value of the maximum value of
FDC was slightly larger than FAC (FAC = 0.78, FDC = 0.90)
and significantly higher than the other DOCs. This shows that
the driver had obvious acceleration or deceleration under these
two DOCs, but the driving operation under the other DOCs
was relatively smooth. The abnormal value of LA also
illustrated the operating performance of aggressive drivers
under differentDOCs.
Meanwhile, the interquartile range of the average THW of

FAC (Q3 = 4.40 s, Q1 = 2.92 s, IQR = 1.48 s, mean = 3.46 s)

was bigger than FDC (Q3 = 3.58 s, Q1 = 2.22 s, IQR = 1.36 s,
mean = 2.94 s), which indicates that drivers generally
maintained a larger THWwhen following accelerating vehicles
than when following decelerating vehicles. This shows that
when a rear vehicle followed a front accelerating vehicle, the
rear vehicle showed a delay effect. When the rear vehicle
followed a front decelerating vehicle, the rear vehicle showed
aggressive behavior, resulting in a small THW. This can also be
observed from the LA index of FDC. It can be observed from the
interquartile range of the average THW of FSC (Q3 = 2.35 s,
Q1 = 1.41 s, IQR = 0.94 s, mean = 1.86 s), RDC (Q3 = 1.98 s,
Q1 = 1.49 s, IQR = 0.49 s, mean = 1.71s) and RAC (Q3 =
2.00 s, Q1 = 1.55 s, IQR = 0.45 s, mean = 1.80 s) that when the
vehicle was in these three DOCs, although the vehicle was still
following, it did not rapidly accelerate or decelerate, but the
THW was already less than 3.0 s, which is consistent with
existing research conclusions (Xu et al., 2015; Suzdaleva and
Nagy, 2018).
In general, although drivers exhibited different driving styles,

they all maintained a large TTC when driving on the
expressway. While the TTC index has been widely used for

Figure 11 Data scatter diagram of longitudinal DOCs of drivers with different driving styles

Table 10 Non-parametric test of one-way ANOVA results

Non-parametric test method
P-value summary

Speed Acceleration THW TTCi DHW

Kruskal-Wallis test 0.011� 0.784 <0.001��� 0.004�� <0.001���

Dunn’s multiple comparisons test
Cautious vs moderate 0.048� 0.980 0.001��� 0.020� 0.006��

Cautious vs aggressive 0.014� >0.999 <0.001��� 0.006�� <0.001���

Moderate vs aggressive 0.450 >0.999 <0.001��� 0.422 <0.001���
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potential risk assessment, the abnormal value of TTC under
different DOCs reflects the behavior of different driving styles;
in particular, theTTCof aggressive drivers fluctuated greatly.
Apart from the FCC, the interquartile distribution distance

of the FAC (Q3 = 70.6m, Q1 = 31.2m, IQR= 39.4m,mean =
52.8 m) and FDC (Q3 = 51.5 m, Q1 = 14.8 m, IQR = 36.7 m,
mean = 35.1 m) were much larger than that of the FSC (Q3 =
38.2 m, Q1 = 19.2 m, IQR = 19 m, mean = 30.3 m), RDC
(Q3 = 33.5 m, Q1 = 22.4 m, IQR = 11.1 m, mean = 28.0 m)
and RAC (Q3 = 35.1 m, Q1 = 25.4 m, IQR = 9.7 m, mean =
30.5 m), indicating that the DHW of all drivers regardless of
their dominant style was significantly different under the FAC
and FDC, while the DHW difference was not significant under
the FSC, RDC and RAC. In addition, from the perspective of
mean distribution, the meanDHWof the FACwas higher than
that of the FDC (FAC = 52.8, FDC = 35.1), which indicates
that all drivers regardless of their dominant style were more
inclined to follow a vehicle with a larger distance under the
FAC.
According to normality and lognormality tests, it was found

that the longitudinal driving control data of different DOCs did
not conform to the Gaussian distribution, so a non-parametric
test and analysis was adopted.
As the number of driving segments was consistent, the

Friedman test method was used for a non-parametric one-way
ANOVA of the sample population. At the same time, Dunn’s
multiple comparisons test method was selected to perform a
non-parametric one-way ANOVA comparison analysis on the
driving segment data from different DOCs. The analysis results

are presented in Table 11, which shows that longitudinal
driving behavior parameters showed highly significant
differences in the calibration of longitudinal DOCs (p< 0.001).

6.3 Frequency of longitudinal driving operation
conditions based on different driving styles
As shown in Figure 13 and Table 11, the results of the DOC
calibrations were classified and statistically analyzed according
to driving style. In this naturalistic driving test, all drivers
regardless of their dominant style preferred FCC. In addition to
the influence of road factors (such as less crowded traffic flow
and better road alignment), it showed that all drivers preferred
free cruising conditions and attempted to avoid complex
following conditions.
It can be observed in Table 11 that cautious drivers took the

largest proportion of FCC and the one-way ANOVA showed
no difference (P = 0.073), indicating that cautious drivers
tended to maintain FCC for a long time. On the contrary, there
were significant differences between moderate and aggressive
drivers, indicating that they will change their driving strategies
according to the changes of driving environment in the
process of naturalistic driving. In particular, the proportion of
FSC and RAC by aggressive drivers was higher, indicating that
aggressive drivers tended to challenge complex driving
conditions.

6.4 Discussion of model recognition results
With reference to the four machine learning models, a sample
set was established to distinguish driving styles. The difference

Figure 12 Box plot for different DOCs
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is that the samples were divided into driving style labels in the
data aggregation stage, namely, conservative driving style,
moderate driving style and aggressive driving style. The sample
set was divided into 70% training set and 30% test set. At the
data level, the problem of the unbalanced number of
conservative driving style, moderate driving style and aggressive
driving style samples was addressed. The ENN method was
used to undersample the normal samples in the training set.
Then, the five-fold cross-validation method was used to train
and verify the data of the training set and finally the model was

tested on an independent test set. Table 9 shows the confusion
matrix predicted by the establishedmodel to distinguish driving
style on the independent test set. The values in Table 9
represent the number of driving segments in the test set.
Figure 14 shows the variation trend and overfitting of the

prediction accuracy of the training set and validation set with
the increased sample training number in the cross-validation
process of the four machine learning models, namely, SVM,
XGB, LR and MLP. Table 9 shows the comparison of the
prediction results of these models on the test set. For multiple
classification problems, the evaluation index of the model was
redefined. The accuracy of the model was the same as that of
the binary classification problem, which was still the right
proportion of the correctly classified samples to all the samples.
As the confusion matrix of the three-way classification was
different from that of the dichotomy, the PPV, TPR, FPR,
TNR, F1-score were also different. In this study, to directly
reflect the prediction of different driving styles, when
calculating the evaluation index of any type of driving style
prediction, the two types of driving styles were merged as one
situation and then it was regarded as a binary classification
problem.
Figure 14 shows that the fitting accuracy of the SVM model

on the training set was less than 80%, while the fitting accuracy
of the other three models on the training set reached 100%.
Moreover, with the gradual increase of the number of samples,

Figure 13 Frequency of different DOCs between different driving style

Table 12 Statistical analysis of frequency of different longitudinal DOCs

Frequency of different DOCs (%)
Driving style FAC FDC FCC FSC RDC RAC Mean (%) SD Sig

Cautious 6.25 3.55 52.57 10.08 14.23 13.32 16.67 18.05 0.073
Moderate 6.19 3.93 42.02 13.50 12.58 21.79 16.67 13.91 0.033�

Aggressive 6.61 3.82 32.92 22.59 8.42 25.64 16.67 11.95 0.019�

Table 11 Non-parametric test of one-way ANOVA results

Non-parametric test method

P-value summary

Average speed
Average longitudinal

acceleration Average THW Average TTCi Average DHW

Friedman test <0.001��� <0.001��� <0.001��� <0.001��� <0.001���

Dunn’s multiple comparisons test
FAC vs FDC <0.001��� <0.001��� <0.142 <0.001��� <0.001���

FAC vs FCC 0.817 <0.001��� – – –

FAC vs FSC >0.999 <0.001��� <0.001��� 0.040� <0.001���

FAC vs RDC >0.999 <0.001��� <0.001��� <0.001��� <0.001���

FAC vs RAC 0.008�� <0.001��� <0.001��� <0.001��� <0.001���

FDC vs FCC <0.001��� <0.001��� – – –

FDC vs FSC <0.001��� <0.001��� <0.001��� <0.001��� >0.999
FDC vs RDC <0.001��� <0.001��� <0.001��� <0.001��� 0.288
FDC vs RAC <0.001��� <0.001��� <0.001��� >0.999 >0.999
FCC vs FSC 0.054 0.003�� – – –

FCC vs RDC 0.032� >0.999 – – –

FCC vs RAC <0.001��� <0.001��� – – –

FSC vs RDC >0.999 0.001�� 0.359 <0.001��� 0.529
FSC vs RAC 0.194 0.094 >0.999 <0.001��� >0.999
RDC vs RAC 0.302 <0.001��� 0.714 <0.001��� 0.022�
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the performance of the SVM model on the training set
worsened. In other words, the SVM model tended to be
suitable for the training of data sets with a small sample size.
From the point of view of the validation score, all the models
were over-fitting. However, as the sample size gradually
increased, the scores of all the models on the test set showed an
upward trend and the change was most obvious for the XGB
model. With the increase of the test sample size, the problem of
overfitting of each classification model was gradually alleviated.
Compared with other models, the overfitting problem of the
SVM model had a smaller gap, but this was because the
performance of the SVM model increased on the test set but
decreased on the training set. That is to say, the SVM model
relied on the decrease of accuracy on the training set and the
increase of accuracy on the test set to solve the over-fitting
problem, which is completely inconsistent with the performance
of the other three models. Therefore, after analyzing the cross-
validation results of the different machine learning models, the
heirarchical performance ranking of the four models on the test
set and training set was XGB � MLP � LR � SVM.
Considering model cross-validation results and prediction
results, the overall heirarchical prediction performance ranking
of the four machine learning models under the current sample
data set wasXGB � MLP � LR � SVM.

7. Conclusions

The driving style of each driver is not fixed; it is affected by
driving environment, traffic state, psychological state and
myriad other influencing factors. This exemplifies the
characteristics of temporal and spatial instability and segment
heterogeneity. If a real-time evaluation method of driving style
based on driving segment change can be constructed, it is
of great significance for formulating personalized driving
strategies, improving driving safety and reducing fuel
consumption. The purpose of this research was to identify
DOCs based on longitudinal driving behavior data and rapidly
predict and label driving styles through MLC models. The
main contributions of this research are as follows:
	 Based on the longitudinal driving behavior parameters of

naturalistic driving data, six DOCs of naturalistic driving
on expressways were calibrated by formulating reasonable
calibration rules, and the feasibility of the DOC
calibrations was verified by naturalistic driving video data.

	 Compared with cautious and moderate drivers, aggressive
drivers adopted a smaller THW and DHW during
naturalistic driving. THW, time-to-collision (TTC) and
DHW, three well-established longitudinal driving
behavior parameters, showed highly significant differences
in driving style identification, while LA showed no

Figure 14 Cross-validation results of different machine learning models
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significant difference in driving style identification. At the
same time, speed and TTC showed no significant
difference between moderate and aggressive drivers.

	 Cautious drivers undertook the largest proportion of
FCC, while aggressive drivers primarily undertook FCC,
FSC and RAC, which indicated that cautious drivers
preferred free cruising, but aggressive drivers tended to
challenge complex driving conditions.

	 Four MLC methods, namely, SVM, XGB, LR and MLP,
were used to classify and predict driving style based on the
six DOCs. In consideration of the cross-validation results
and model prediction results, the overall hierarchical
prediction performance ranking of the four machine
learning models under the current sample data set was
XGB � MLP � LR � SVM.

The contribution of this research is to propose a criterion and
solution for using longitudinal driving behavior data to label
longitudinal DOCs and rapidly identify driving styles based on
those DOCs andMLCmodels. This study provides a reference
for real-time online driving style identification in vehicles
equipped with onboard data acquisition equipment, such as
ADAS.
However, there are still some directions to be further studied:

	 Naturalistic driving data was heterogeneous due to
different road types; as a result, the threshold criterion for
the label of the DOCs based on driving data from different
road types may not be portable nor extensive. Therefore,
the DOCs calibration criteria developed in this study may
not be fully applicable to driving style identification on all
types of road scenes. In addition, the problems of
endogeneity among various DOCs and the spatiotemporal
correlation also needs to be further studied.

	 The influence of lateral driving behavior was simplified in
this research, which may affect the training and test
performance of the model. This research was an attempt
to quickly label driving style. The multi-dimensional data
of the vehicle’s longitudinal and lateral driving behavior
will be worth considering for modeling in future research.

	 The amount of sample input in this study was insufficient,
which is reflected in the fact that the problem of overfitting
was common in the process of model training and testing
and the generalization error was large. Future research will
carry out more naturalistic driving data collection to verify
the model. At the same time, it is also necessary to carry
out multi-scenario testing to study the applicability of the
model under multiple scenarios.
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