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Abstract

Purpose – Rapid sensitivity analysis and near-optimal decision-making in contested environments are
valuable requirements when providing military logistics support. Port of debarkation denial motivates
maneuver from strategic operational locations, further complicating logistics support. Simulations enable rapid
concept design, experiment and testing that meet these complicated logistic support demands. However,
simulation model analyses are time consuming as output data complexity grows with simulation input. This
paper proposes a methodology that leverages the benefits of simulation-based insight and the computational
speed of approximate dynamic programming (ADP).
Design/methodology/approach – This paper describes a simulated contested logistics environment and
demonstrates how output data informs the parameters required for the ADP dialect of reinforcement learning
(aka Q-learning). Q-learning output includes a near-optimal policy that prescribes decisions for each state
modeled in the simulation. This paper’smethods conform to DoD simulationmodeling practices complemented
with AI-enabled decision-making.
Findings – This study demonstrates simulation output data as a means of state–space reduction to mitigate
the curse of dimensionality. Furthermore, massive amounts of simulation output data become unwieldy. This
work demonstrates howQ-learning parameters reflect simulation inputs so that simulationmodel behavior can
compare to near-optimal policies.
Originality/value – Fast computation is attractive for sensitivity analysis while divorcing evaluation from
scenario-based limitations. The United States military is eager to embrace emerging AI analytic techniques to
inform decision-making but is hesitant to abandon simulation modeling. This paper proposes Q-learning as an
aid to overcome cognitive limitations in a way that satisfies the desire to wield AI-enabled decision-making
combined with modeling and simulation.
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Introduction
Current, near peer, adversarial applications of lethal and nonlethal anti-access/area-denial
(A2/AD) capabilities expand contested logistic environments and potentially impact mission
success. Future joint forces will not enjoy the unhindered global resource access that enables
logistic operations support to maritime, land or air supremacy. Future enemy A2/AD tactics
will threaten transiting or functioning joint forces through interdiction or by holding
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intermediate staging bases at risk, thereby denying the use of preferred bases and forcing
them to establish longer lines of transit. Strategic diplomatic agreements, or economic and
escalatory pressure, will also hinder basing or overflight rights. Logistics forces, supplies or
facilities are lucrative and vulnerable targets, increasing the attrition risk of logistics
capabilities. As such, if aerial and seaports of debarkation (A/SPOD) are denied, then
strategic or operationally distant maneuvering may be required, which further complicates
logistic operations (joint concept for logistics).

Simulation modeling of complicated logistic operations plays a vital role in supporting
joint forces that are able to project global air, land and sea power. These models include
competitive peacetime environments against peer adversaries to achieve dominance in all
conflict domains. These virtual environments enable interaction with simulated systems and
networks to gain insight into logistic decision-making impacts and to seek better solutions
(MacFarland, 2021).

Simulation modeling seeks better solutions without costly prototyping or live exercises.
This motivates experiments with simulation input parameters and simulation output
analysis. In this spirit, we propose a method that combines simulation modeling with
approximate dynamic programming (ADP) as an output analysis method to optimize the
decisions under scrutiny in the simulated environment. High-level simulation output
analyses are demanding and time consuming due to the considerable amount of complex
output data that grows exponentially with the number of units, locations, sensors or
weapons. Depending on themodel being used, or the scope of the environment beingmodeled,
a single run may generate gigabytes (GBs) of data that demand rigorous analysis to produce
useful insights. The analysis must identify trends across multiple simulation runs to
understand how decisions affect the logistic operations. Furthermore, these analyses inform
timely, high-level, mission-critical decisions, so turnaround between model construction and
output analysis is, by necessity, rapid.

Rapid turnaround and quick sensitivity needs to make ADP an attractive method for
simulation output analysis. Here, we describe amethodwhere simulation output data informs
the parameters of an ADP model known as Q-learning, or reinforcement learning. We
describe a simple contested logistics environment, manifested in Simio, and the degree to
which the output data helps parameterize the states, actions, contributions and state–state
transitions required for ADP. The ADP model output includes an approximately optimal
policy that prescribes decisions for each state modeled in the simulation. This method enjoys
the benefits of rapid simulation analysis with the desire to wield AI-informed decision-
making, all while incorporating the joint force paradigm of modeling complex, adversarial
environments with simulation modeling. This is an important and attractive feature of our
method. The United States military is eager to embrace emerging analytic techniques such as
AI decision-making aids but is rightly hesitant to completely abandon simulation modeling.

The following section provides background on both contested logistic operations
simulation modeling and ADP. Next, we discuss literature related to these same topics
followed by describing methodology specific to a simple scenario modeled in Simio, and the
ADP parameters. We then discuss experimental results and their validation. We conclude
this paper by describing contributions to the world of contested logistics modeling and
decision-making.

Background
Simulation modeling contested logistics
Simulation modeling of contested logistics, or for any military logistics context, has a rich
history of aiding decision-making. Simulation has transformed from a brute-force numerical
integration method into an attractive (and preferred) option for decision-makers. This is due
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to the exponential growth of computing power combined with the ability to harness vast
amounts of data and logistic requirements into a structured system. In this, and particularly
in military decision-making contexts, simulation is frequently considered a “first resort” for
complex real-world issues (Powers et al., 2012).

Consider the model of an air defense system from Rich (1955), where the combination of
decision-makers and simple emulation devices comprises the simulation of the dynamic
environment. This demonstrates the rich history of simulation as a military decision-making
aid. Today, the United States Department of Defense (DoD) regularly apply wide varieties of
large simulations to assess how forces should be equipped, organized, trained, employed,
deployed, and maintained. Some large scale simulations, such as the Synthetic Theater
Operations Research Model (STORM), may be outpacing “Lucas’s Law,” that is: “The detail
within a model grows in proportion to the processing power available, leaving runtimes
relatively constant” (Powers et al., 2012). A STORM scenario, like most common, simulation
scenarios, is a complex system with big data challenges that may yield hundreds of millions
of possible actions. As such, output analysis of these large-scale simulations benefits from
complementary optimization methods such as ADP.

Approximate dynamic programming
ADP is a sequel to Richard Bellman’s 1950 introduction of dynamic programming (DP). DP is
the recursive, iterative process of discovering optimal strategies for dynamic, sequential
and uncertain decision-making problems (Rust, 2019). The stochastic version of Bellman’s
equation sets the stage for the learning version that is applied in this study. The applied ADP
dialect of Q-learning engages an AI agent to learn in a dynamic environment. The agent,
starting from a state s and performing an action a, transitions to a new state while being
rewarded, with the objective ofmaximizing the rewardwhilemapping system states to action
spaces to obtain a high quality decision-making policy. We emphasize the high-quality
optimality approximation Q-learning solution as an important feature for solving intractable,
high-dimension state–space vector problems (Alkaabneh et al., 2021). Q-learning parameters
are state–space S, actions A, contribution function C and state–state reachability vice
transition probability matrices (TPMs). State–state reachability in lieu of TPMs is a nice
feature for real-world problems where transition probability knowledge is unknowable
or the state–space makes transition probability calculation intractable. Q-matrix Q(s, a)
holds the expected reward for each possible action a taken from state s. Q(s, a) achieves
band-convergence, allowing Q-learning maximum expected reward and optimal policy R*
approximation by defining the value of each state, V(s), according to (1):

VðsÞ ¼ max
a

Qðs; aÞ (1)

At iteration n, Q(s,a) populates with cqn approximated by (2):

cqn ¼ bCðsn; anÞ þ γmax
a0∈A

Qn−1
�
snþ1; a0

�
(2)

In (2),Q(s,a) convergence requires discount parameter γ, which values a future reward as if it
were current reward when set close to 1.0, or prefers short-sighted, myopic optimal policies
when set close to 0.0. With (2), the AI agent learns optimal action a from each state s by
defining optimal a at iteration n with (3):

an ¼ argmax
a∈A

Qn−1ðsn; aÞ (3)
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Q-learning uses the estimates Qn−1ðsn; aÞ from iteration n-1 at iteration n. With bqn, Q-factors
in Q(s,a) update via the learning version of Bellman’s, as seen in equation (4):

Qnðsn; anÞ ¼ ð1� αn−1ÞQn−1ðsn; anÞ þ αn−1
bqn (4)

This model sets equation (4) learning rate parameter α to 0.1, avoiding Q-factor apparent
convergence (since α> 0.0) without learning too quickly (since α< 0.99). Equation (4) derives
total reward ΣV(s), and optimal policy vector R*, which describes approximately optimal
decision-making strategies in our contested logistics environment.

Literature review
Simulation and contested logistics
The rich history of simulation modeling to aid logistic decisions is recognized in MacFarland
(2021), which focuses on simulation experiments with goals to assess joint interoperability,
adversarial deterrents, or validating plans. In this spirit (Ghanmi et al., 2008), applies discrete
event simulation to assess Multinational Intra-Theater Distribution (MN ITD) coalition
operation logistics distribution systems. However, logistic decision-making simulation
models are not monopolized by military context. For example Vidalakis et al. (2011), presents
simulation modeling of construction material distribution logistics through intermediate
nodes similar to the various locations in our contested logistics scenario (R�eveillac, 2017);
focuses on logistic system flow simulation to generate data that are collected and used to
build optimization models across software ranging from flow simulators to simple
spreadsheets, similar to our study’s use of Simio data to build an ADP model
(Dehghanimohammadabadi and Keyser, 2015); combines simulation and optimization by
calling the optimizer during simulation execution processes applicable to supply-chain and
machine maintenance problems. Similarly, our method recommends validating ADP
approximate optimal policies via the contested logistics simulation model scenario.

Approximate dynamic programming
The ADP dialect of Q-learning works well for problems with a relatively small state space, as
recognized by Jiang et al. (2014), which discusses the shortcomings of lookup tables in large
scale applications. However, modern computing speed and the relatively small scale of our
contested logistics scenario make Q-learning a tractable technique. Furthermore, the Q-
learning value functionQ(s, a) for state s and action a, while not as accurate as value iteration,
is sufficient to model decision-maker choices.

This study’s applied Q-learning R package, ReinforcementLearning, refers to Sutton and
Barto (2018) for its technical and theoretical details. The authors emphasize that Q-learning
band-convergence satisfies most real-world decision-making requirements akin to those in
this contested logistics study. The importance of real-world applicability is highlighted in
ReinforcementLearning literature from Pr€ollochs and Feuerriegel (2018). Band-convergence
is a satisfactory optimal approximation according to an assumption stated by Silver et al.
(2017), wherein Q-learning requires a solid base of first principles that need not include state
transition probabilities. Our contested logistics “first principles” refer to the action–reward
and state–state reachability parameters evaluated in a simulated environment. Our military
simulated environment resembles those seen in Summers and Robbins (2020) and Davis et al.
(2017), both involving ADP-derived approximately optimal sequential missile engagement
strategies. These strategies are solutions in high-dimension state–spaces that make
alternative solution methodologies intractable. For real-world, high-dimension problems,
traditional optimization methods are not possible due to long computation time and memory
requirements. This is known as the curse of dimensionality (Powell, 2011). Our model
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captures sequential decision-making in a tractable contested logistics context, demonstrating
a similar need for optimal policies in a complex, dynamic environment.

Uncertain dynamic environments motivate ADP MEDEVAC dispatch policies as seen in
Nasrollahzadeh et al. (2018), Robbins et al. (2020) and Rettke et al. (2016). Nasrollahzadeh et al.
(2018) recognizes ADP ability to compute high quality solutions in unbounded state–spaces,
while Robbins et al. (2020) goes on to recognize the benefit of ADP as a framework to compute
high quality policy approximations with less computational expense than a high-fidelity
scenario-based simulation. Our contested logistics model reconciles ADP vs. simulation
modeling via a complementary approach that resembles (Astaraky and Patrick, 2015),
wherein the authors apply the ADP concept of post-decision state variables to a surgical
schedulingmodel that has been informed by simulation. The authors recognize that problems
may remain intractable despite ADP state–space reductions and recommend a function
approximation architecture where a class of functions parameterizes state values in lieu of Q-
learning lookup tables. In a similar surgery scheduling context (Silva and de Souza, 2020),
recommend approximate policy solutions in the face of dynamic decision-making
environments that anticipate new information. Value function approximation is tenable
via approaches akin to regression analysis of simulation output data representing state
values, should the scenario grow beyond the complexity modeled in this study.

Methodology
Scenario description
Our notional scenario, although fictional and not aligned with logistics doctrine or tactics,
techniques and procedures (TTPs), represents a useful contested logistics challenge. A
supported unit (TF1) and a supporting aerial port are located within an area of responsibility
(AOR) that is vulnerable to red adversary Dong–Feng 21 (DF-21) medium-range ballistic
missile launchers. Aerial port operations are defined by velocity and volume of supplies
needed for TF1. TF1 moves deeper into adversary territory, becoming vulnerable to
additional red units, artillery and air defense artillery (ADA). The aerial port must depart its
current location at edge port 1 (EP1) and routinely move to other EPs inside the AOR to avoid
DF-21 targeting while continuing logistics support (defined by velocity and volume of
supplies) to TF1. Figure 1 is a Simio screenshot that summarizes the scenario.

The scenario’s operational decisions, which must be made frequently, are to which
potential aerial port location should the EP move, what type of transportation should the EP
use to get there, and how should the EP perform resupply logistic support operations to TF1
at its new location. Consider the combinatorial complexity of the following decision
parameters:

(1) A total of 19 potential aerial port locations.

(2) A total of 7 possible movement combination options of aircraft, ship or truck.

(3) A total of 7 possible resupply combination options of drone, ship or truck.

These decision parameters, alone, naively yield 931 options, each of which possesses pros and
cons associated with movement costs and distances, resupply costs and distances and threat
vulnerability. For example, the potential aerial port location (blue square) located
immediately south of the supported unit’s new location (purple square) in Figure 1 seems
ideal. It is outside the red threat range, and it is close to the supported unit; however, the EP
cannot always remain at that location because of vulnerability to DF-21 targeting, and
movement options from that location are costly in terms of vulnerability or distances to other
movement options. But should the EP opt to move to a location that is further away from the
supported unit, resupply operations are more costly. These are the types of considerations
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thatmust be given to each decision. In this, even simple scenarios present large decision space
problems that despite the aid of simulation modeling can overwhelm the decision-maker with
descriptive simulation output data that require rigorous, complementary simulation output
analysis. The following sections describe how Simio modeling reduces the decision space so
that the ADP output analysis does not suffer the curse of dimensionality.

Simio modeling
Simio software provides a workspace for modeling facility resources and entities, as well as
for running discrete event simulation (DES). It provides a standard library of fixed objects
and the tools for developing accurate 3D models that represent process workflows and
resources. Simio also supports animating workflows and the integration of custom models
representing shop floor or aerial port resources into animations.

Sophisticated aerial port operations, material handling workflows, and process logic may
be modeled and animated using DES software such as Simio. The software can model the
operation of a system as a discrete sequence of events in time. Each event occurs at a
particular instant and marks a change of state in the system. For example, an aerial port
activity that includes packing crates, loading pallets, moving pallets via k-loaders, forklifts
and aircraft, can be defined and modeled in Simio as a sequence of discrete events or
activities. In addition, the process logic associated with those activities may be modeled. For
the ADP-Simio application, Simio will model the velocity and volume of supplies needed on a
daily basis to sustain TF1 at its new location, defined as TF10.

Approximate dynamic programming modeling
The TPM-free ADP dialect of Q-learning learns near-optimal behavior through random
interactions within a dynamic environment and reward-based performance evaluation.
Q-learning is unsupervised as there are no specific improvement behavior instructions.

Figure 1.
Simio screenshot

scenario’s summary
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Q-learning deals with unstructured state–spaces possessing unknown transition
probabilities with a learning version of Bellman’s equation that converge to a near-optimal
band objective vice a point-value. Q-learning is attractive for this study because of the
relatively small state–space, sufficient computing power and the lack of TPM requirement.

We parameterize our Q-learning model with states S, actions A and rewards C(sn, an). As
seen in (2), Q(s,a) convergence requires discount parameter γ, which is the value of future
rewards. Setting γ close to 1.0 treats future rewards as current rewards, while γ close to 0.0
prefers immediate reward and a myopic near-optimal policy. There is opportunity to
experimentwithmodel sensitivity to 0.0≤ γ≤ 1.0, but for this studywe set γ5 0.5.We use the
R package ReinforcementLearning for Q-learning application, which attributes theoretical
and technical details to Sutton and Barto (2018). The authors recognize that real-world
problems benefit from a constant learning rate α in (4) for rapid band-convergence. As such,
we set α to 0.1, avoiding Q-factor apparent convergence (since α > 0.0) without learning too
quickly (since α< 0.99). ReinforcementLearning requires a data frame input in a state/action/
reward/next-state format to represent the stochastic environment with inter-state
reachability. We refer to Figure 2 Simio screenshot for states, actions, contributions and
transitions, with expository descriptions in the sections that follow.

States.We define a state at iteration n, sn ∈ S, as a combination of location, how the aerial
port had arrived at the location, and how the aerial port provides resupply. Simply put, the
aerial port’s state describes where it is, how it got there and what it is doing.

Simio model operations analysis reduces possible EP location options to EP 0 5 {EP1,
EP13, EP14, EP15 and EP17}. EP1—the orange square in Figure 2—is the starting location
in the scenario from which the aerial port does not return after departing to a different
location. The remaining feasible EPs are Figure 2 blue squares located within the yellow-
dashed air defense cover and within approximately eight miles of the supported unit’s new
location TF10.

The current state is also defined by how the aerial port arrived at the current location. This
state variable assumes that if the aerial port used a resource to arrive at its current location,
then it is less costly to use that resource to move. We define this state variable REL via seven
possible movement combination options of aircraft, ship or truck.

Finally, the current state is defined by how the aerial port is providing resupply. This state
variable assumes that if the aerial port used a resource to provide resupply, then it is less
costly to use that resource in some future state. We define this state variable RES via seven
possible resupply combination options of drone, ship or truck. In this, S 5 {EP 0, REL
and RES}.

We codify each current and future state as a binary vector in the set order of {EP 0, REL
and RES}. For illustration, the state of being at EP13, having moved by aircraft, and
resupplying via drone and truck codifies as {01000 100 101}. Binary representation eases
coding and reduces computational complexity between state, action, reward and transition
interactions.

Actions.Wedefine an action a at iteration n, an∈A, as a combination of next location, how
the aerial port will move and how the aerial port will provide resupply. Possible next location
options are EP00 5 {EP13, EP14, EP15 and EP17}.

We define movement actions REL0 as seven possible movement combination options of
aircraft, ship or truck.

Similarly, we define resupply actions RES 0 as seven possible resupply combinations
options of drone, ship, or truck.

In this, A 5 {EP 00, REL 0 and RES 0}. All chosen actions are codified as binary vectors,
similar to state variable representations. The costs and benefits of each action contribute to
the reward for each decision made from each state.
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Rewards or contributions. Reward value construction begins with calculating weights ω
associated with location decision distances to threats RT5 {red1, red2, red3 and artillery},
TF10, REL0 and RES 0.

Weights ωD(i), i ∈ {1 . . . 5} associate with location distances to {RT, TF10}.
Weights ωR(j), j ∈ {1 . . . 6} associate with REL0 and RES 0 costs.
Next, we construct vulnerability weights υ based on REL0 and RES 0 vulnerability to RT.

We normalize these weights, ωD(i)
0, ωR(j)

0 and υ(j)0 with the schemeωD(i)
0 5ωD(i)/Σωυ for all

weights, where Σωυ 5 sum(ωD(i), ωR(j), υ(j)).

Figure 2.
Simio screenshot for

states, actions, rewards
and transitions
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Distance matrix Dkm stores distances between k andmwhere k andm ∈K5 {EP 00,TF10
andRT}.We initialize red threat reward coefficient vectorRTrew5 {1, 1, 1, 1}. The reward for
moving away from RT(m), m ∈ {1 . . . 4} is RTrew(m) 5 0, which is evaluated with Dkm.
Similarly, we initialize supported unit reward coefficient TFrew 5 0, and TFrew 5 1 is the
reward for moving toward TF10.

We define action ban as the binary {REL0, RES0} vector subset representation of the action
taken at any iteration n, and Da as the distance between EPn-1

00 and EPn0
00. With these, we

define the movement and resupply cost, CR2, with (5).

CR2 ¼ Da *
X
j

ωRðjÞ0 * ba n
�
dim ðba nÞ þ

X
j

ωRðjÞ0 * ðba n � fREL; RESgÞ (5)

Equation (5) considers CR2 as a function of distance and of switching movement methods
between states. Similarly, (6) defines the reward for action vulnerability, Cv.

Cv ¼ Da *
X
j

υðjÞ0 * ba n
�
dim ðba nÞ (6)

Note that (6) represents a vulnerability window for time in transit, not for distance to threats,

which is accounted for in (7), the total reward bC.
bC ¼

X4

i;m
ωDðiÞ *RTðmÞ þ ωDð5Þ *TFrew � CR2 þ Cv (7)

Transitions.Q-learning replaces TPMswith state–state reachability in a state space explored
by the agent to learn the approximately optimal policy. To this end, ReinforcementLearning
requires a data frame of current state, action, reward and next state. We initialize this data
frame via naı€ve random sampling of all possible combinations, and then we refine the data
frame by removing state – next-state entries that violate scenario “rules.” For example, note
that in Figure 2, EP13 is south of TF10. Should the current state location be EP13, and the
movement action be to move to EP15 (located north ofTF10), then we assume that no amount
of uncertainty would result in the aerial port ending up in EP14 at the next state. Therefore,
any data frame row that contains current state EP13, action move to EP15 and next state
EP14, removes from the state space. Similar rules may apply to other movement or resupply
actions as suitable for the scenario. This method has the benefit of state space reduction and
is an adaptable way to tailor a scenario for “what if” analyses.

Experimental results
Simio-ADP contested logistics model results are too diverse to display completely, but suffice
it to say that ADP policies present decisions that are not obvious or intuitive. This is because
ADP considers sequential decisions under uncertainty in timelines that extend far beyond
human cognitive capability. Here, in Figure 3, we present results with assigned ADP
parameter values that align with those in the Simio scenario to demonstrate how ADP
produces prescriptive outcomes to aid the decision-maker. In this, our model serves as a
prototype for a dynamic method for making approximately optimal decisions in a rapidly
changing operational environment. Decision-makers need not be alarmed by the
approximation of optimality vice optimal decisions in large-scale problems where true
optimality is intractable. Q-learning iterates until apparent convergence, thus guaranteeing
high quality policies in an unsolvable optimality problem. For example, Figure 3 displays
nearly optimal location actions when departing EP1 throughout the scenario.

Consider the less-than-obvious policy that recommends departing EP1 for EP17 most of
the time, as seen in Figure 3 left plot. EP17 is the furthest option from EP1, is among the
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furthest from TF10 and is located within the red threat ring (see Figure 2). It is not obvious
that EP17 would be the most frequently recommended initial location from EP1 in a near-
optimal policy. This illustrates that ADP considers factors beyond the myopic, greedy choice
that may have most often recommended EP13 as the best initial option. However, note that
EP13 is the most often recommended location option throughout the course of the scenario at
43%, according to Figure 3 right plot. Once again, ADP considers a long time horizon and
state variables such as movement and resupply methods, which are described in Figure 4.

The plots in Figures 3 and 4 are useful summary statistics of near-optimal actions, but a
dynamic contested logistics environment benefits from prescriptive analysis outputs such as

Figure 3.
Movement action

distribution from EP1
(left plot) and

throughout the
scenario (right plot)

Figure 4.
Movement and

resupply method
distributions

throughout the
scenario
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the ADP policy. To this end, we develop a model query function that yields output examples
like those seen in Figure 5, which details the first six rows of a data frame of all actions that
include relocating to EP13 with methods that include ships and resupplying with methods
that include trucks.

The first row in Figure 5 tells us that if we are in a state of being located at EP15 (a “1”
under the “EP15” column), having had moved by aircraft (“1” under “relAC”), and having
been resupplying via drone and ship (a “1” under “resDrone” and “resShip”), then we should
move to EP13 byway of ship, after whichwe should resupply via drone, ship, and truck (a “1”
under columns “A_EP13”, “A_relShip”, “A_resDrone”, “A_resShip” and “A_resTruck”).
Similarly, the sixth row tells us that if we are located in EP14, having had moved by aircraft
and ship, and having been resupplying with ship and truck, then we should move to EP13 by
way of ship, where we should resupply via ship and truck.

The results in Figure 5 are a small sample of decisions that guarantee near-optimal value
throughout the scenario timeline. Evenwith this simple scenario, the decisions are not always
intuitive, and the reasoning behind them spring from the reinforced learning of the ADP
agent, who experiences consequences for the decisions made on a long time horizon. Of
course, these results reflect the parameter values in this model instance, but an attractive
ADP feature is the speed with which it enables experimenting with parameter values to
compare results.

Results validation
ADP used in combination with Simio and other federated models offers new insights into AI-
enabled, logistics-centric decision-making.MITREplans to validate the Simio-ADP results, in
coordination with various sponsors, in a campaign-level model that will track velocity and
volume of supplies delivered in an adaptive scenario.

Contributions and conclusions
This paper contributes a methodology that conforms to DoD simulation modeling practices
complemented with AI-enabled decision-making to evolve anecdotal, experience-based, or
antiquated methods. The military recognizes AI as a necessary resource to keep pace with
near-peer adversaries, yet stubbornly sticks to decision-making processes that do not adapt
to dynamic environments over lengthy horizons. Lettau and Uhlig (1999) ponder this
phenomenon:

It is intriguing to speculate about possible resolutions such as instincts, learning from your peers,
education, meta-rules for changing rules, or the neuronic limits of the brain. We simply take these
given rules, as well as the fact that the agent stubbornly sticks to choosing between them throughout
his infinite life as primitives of the environment.

Regardless of the reasons behind stubborn reliance on reasoning methods that do not keep
pace with the dynamics of a complex environment, all of them are vulnerable to the
misconception of “boundless rationality,” the suggestion that humans possess unbounded
levels of rational, computational ability (Rust, 2019). In reality, humans are unlikely to grasp
optimal or approximately optimal strategies in uncertain, long time horizons. Here, we
demonstrate ADP as an aid to overcome these limitations in a way that satisfies the desire to
wield AI-enabled decision-making that complements established modeling and simulation
methodology. This study combines simulation output data as a means of state–space
reduction to avoid the curse of dimensionality. Further research would benefit from using
simulation output data to estimate Q-value approximations, thereby setting the stage for
similar near-optimal policy requirement problems on a larger scale.
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Figure 5.
Model query output for
movement to EP13 via

ship, resupply with
truck actions (first

six rows)
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