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Abstract

Purpose – This study aimed to assess the potential of the Clinical Dementia Rating (CDR) Scale in the
prognosis of dementia in elderly subjects.
Design/methodology/approach – Dementia staging severity is clinically an essential task, so the authors
used machine learning (ML) on the magnetic resonance imaging (MRI) features to locate and study the impact
of variousMR readings onto the classification of demented and nondemented patients. The authors used cross-
sectional MRI data in this study. The designed ML approach established the role of CDR in the prognosis of
inflicted and normal patients. Moreover, the pattern analysis indicated CDR as a strong cohort amongst the
various attributes, with CDR to have a significant value of p < 0.01. The authors employed 20 ML classifiers.
Findings – The mean prediction accuracy varied with the various ML classifier used, with the bagging
classifier (random forest as a base estimator) achieving the highest (93.67%). A series of ML analyses
demonstrated that the model including the CDR score had better prediction accuracy and other related
performance metrics.
Originality/value – The results suggest that the CDR score, a simple clinical measure, can be used in real
community settings. It can be used to predict dementia progression with ML modeling.

Keywords Alzheimer’s disease, Clinical dementia rating scale, Cross-sectional, Dementia, Machine learning,

MRI, Prediction

Paper type Research paper

1. Introduction
Dementia has been considered a brain malfunctioning condition that adversely affects the
cognitive attributes of an individual (Barrett & Burns, 2014; Emanuele, Alessandro, Vict�oria,
Federica, & Lavinia, 2021). Alzheimer’s disease (AD) is a type of dementia characterized by a
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decline in cognitive functions, particularly memory, as well as language and problem-solving
(Barrett & Burns, 2014; Linz, Troger, Alexandersson, Konig, Robert, & Wolters, 2017;
Porsteinsson, Isaacson, Knox, Sabbagh, & Rubino, 2021). Aside from AD, other conditions
such as stroke, traumatic brain injuries and brain tumors can also cause this condition (Linz
et al., 2017). Considering the world’s growing aging population, global estimates of AD
prevalence are anticipated to rise from 25 to 63 million by 2030 and 114 million by the year
2050 (Cacchione, Powlishta, Grant, Buckles, & Morris, 2003). There have been subtle but
meaningful advances in the pharmacological therapy of this deadly disease over the last two
decades. Even so, early and accurate diagnosis of dementia in its earliest stages is required for
successful management and treatment to limit disease development (Wimo,Winbald, Torres,
& Strauss, 2003; Ribeiro, Lopes, & Lourenço, 2013).

The early prognosis of dementia could be made plausible by the identification of disease-
associated reliable markers (Ranson et al., 2021). In this regard, various neuropsychological,
biochemical and genetic-based markers may help in monitoring dementia progression.
Sheehan highlighted various assessment scales to assess the severity of dementia. Numerous
small dementia screening tests have been reported in this paper, which are suitable for
primary and secondary healthcare (Sheehan, 2012). They are Mini Mental State Examination
(MMSE), Abbreviated Mental Test Score, Clock-drawing test, Six-item Cognitive Impairment
Test, General Practitioner Assessment of Cognition, Mini-Cog, Test Your Memory, Montreal
Cognitive Assessment (MoCA), Addenbrookes Cognitive Assessment and Memory
Impairment Screen (Sheehan, 2012). For overall dementia severity, Clinical Dementia
Rating (CDR), Global Deterioration Scale and Clinicians Global Impression of Change were
showed in his findings (Sheehan, 2012). Keeping this fact into consideration, it would be
appropriate to look for a cost-effective and simple diagnostic marker that can be easily
accessed in routine clinical settings. A variety of studies have recommended CDR andMMSE
as a strong predictor for the progression of AD-related dementia (Nakata et al., 2009; Daly
et al., 2000). In a recent study, Wessels, Dowsett & Sims performed a comparative analysis of
ADAS-Cog (Alzheimer’s Disease Assessment Scale – Cognitive Subscale) and CDR-SB
(Clinical Dementia Rating – Sum of Boxes [SOB]) for detecting the treatment group
differences in AD (Wessels, Dowsett, & Sims, 2018). They found that the ADAS cognitive
subscale was more frequent than the CDR-SB scale in the detection of AD treatment group
differences (Wessels et al., 2018).

CDR scale, proposed by the Washington University, is a global assessment tool that
generates two outputs, namely (1) global and (2) SOB scores. The global score is frequently
employed to grade various stages of dementia severity in inflicted patients (O’Bryant et al.,
2010). This can be widely exploited in both research as well as clinical settings (Hughes, Berg,
Danziger, Coben, & Martin, 1982). The CDR Scale is significantly used to evaluate the
functional and cognitive impairment status inADpatients (Morris, 1993;Morris et al., 1997). It
is represented by a five-point scale and is used to assess six major fields of functional and
cognitive performances (Hughes et al., 1982; Morris, 1993). These domains include memory,
judgment and problem-solving, orientation, home and hobbies, community affairs, personal
care, etc. This scale has been introduced to build diagnostic differences among the
nondemented healthy versus demented patients. It covers demented patients very mild score
(i.e. CDR 0.5) (Lim, Chong, & Sahadevan, 2007; Balsis, Miller, Benge, & Doody, 2011). In line
with this, Coley et al. in their study reported the suitability of the CDR-SB scale as a primary
measure in AD tests (Coley et al., 2011). They further claimed that CDR-SB alone can be
employed as a sole cognitive assessment scale for AD trials (Coley et al., 2011).

Apart from the CDR testing variable, MoCA, MMSE, etc. are other standardized tests that
have been formulated for dementia. But CDR score can alone aid in the detection of dementia
and related brain deterioration. The diagnosis of dementia and other cognitive related
diseases has remained an extremely challenging task (Barrett&Burns, 2014). For this reason,

Assorted ML
analysis in
dementia
prediction

3



the development of easy to operate and efficient techniques are crucial for timely detection
leading to proactive interventions (Prince, Herrera, Knapp, Guerchet, &Karagiannidou, 2016;
Prince, Albanese, Guerchet, & Prina, 2014).

In the healthcare sector, the implementation of machine learning (ML) can provide an
effective method of using dense information needed for an accurate diagnosis. ML, a science
of pattern learning, has the unique ability to deal with bulky datasets leading to the
development of pr�ecised predictive models (Khan & Zubair, 2018). ML allows the automatic
selection of high-value predictors from a pool of possible inputs (Amoroso et al., 2017). The
application of magnetic resonance imaging (MRI) along with the complex ML algorithms is
being used to distinguish the healthy brain from that of the mildly demented brain (Battineni,
Sagaro, Chinatalapudi, Amenta, 2020a; Battineni, Chintalapudi, Amenta, & Traini, 2020b).
Battineni et al. reviewed 435 articles published between 2015 and 2019, based on applications
of ML in the diagnosis of chronic diseases (Battineni et al., 2020a, b). They finally selected 22
studies to present a comparative analysis (Battineni et al., 2020a, b). Among these 22 reviewed
papers, they found dementia as one of the chronic diseases with case-control as a study type,
MRI as input features and support vector machine (SVM) classifier was employed for ML
modeling (Battineni et al., 2020a, b). Furthermore, in another referenced paper, Battineni et al.
built an ML model for dementia prediction using the SVM classifier (Battineni, Chintalapudi,
& Amenta, 2019). They performedMLmodeling on the longitudinal pool of 150 MRI patients
and reached a prediction accuracy of 65.75% (Battineni et al., 2019). Khan & Zubair proposed
an improved multi-modal ML pipeline for the prognostication of AD (Khan & Zubair, 2020a,
b, c, d). Their findings showed to have an accuracy of 87.0% on the random forest ML
classifier, built on Open Access Series of Imaging Studies (OASIS) longitudinal MRI data
(Khan & Zubair, 2020a, b, c, d).

Deep learning is a branch of ML that involves several layers of information processing
steps in a hierarchical way for unsupervised feature learning and pattern classification
challenges (Deng&Yu, 2014). Deep neural models typically outperform shallowmodels when
confronted with challenging learning problems (Onan & Toço�glu, 2021; Onan, 2022). It is a
current direction of research in ML that tries to develop a classification scheme with greater
prediction performance based on numerous layers of nonlinear information processing
(Onan, 2020). Also, it is gradually making its way into novel tools with high-value clinical
applications in the real world. Innovative patient-facing applications and a few surprisingly
established methodologies in image analytics and diagnostics are among the most promising
use cases.

As stated above, a number of studies and extensive research have been done recently on
the prediction, progression and diagnosis of dementia and AD based on ML methodologies
(Nori, Hane, Martin, Kravetz, & Sanghavi, 2019). Among these, several studies reported
employing only traditional-based ML classifiers, which employs classifiers with no tweaking
of hyperparameters or ensembling approach. This caused to have a model with lower
accuracy and reduced performance. Besides, a proper sequential data preprocessing
workflow that can deal effectively in handling the missing data, outliers and imbalanced
classification problem is the kernel of any productive ML model (Lim et al., 2007; Balsis et al.,
2011). Thus, this is a severe issue and hence a challenge to build such a system where
dementia and related disorders can be predicted effectively (with higher accuracy and
improved performance) based on neuropsychological and demographic data. There is a
considerable need for an effective, reliable, cost-effective and scalable screening method for
AD and its early stages, which can encompass a proportion of patients with mild cognitive
impairment (MCI), or subjective memory complaints (SMCs), to expedite preventative clinical
investigations and address under-diagnosis in the population. Multiple classifier systems
(often referred as ensemble classifiers) have been extensively used in the realm of pattern
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recognition to construct robust classification schemes due to their significant improvement in
generalizability and predictive accuracy (Onan, 2018a, b).

Thus, the present study is significant in that we attempted to develop a cross-sectional
MRI features-based ensembleML strategy to diagnose dementia. Following that, we usedML
to assess the efficacy of the CDR score. ThisMLprogramwas further used in the prediction of
dementia progression in older adults. On the basis of cognitive and functional measures of
demented versus healthy brains, the predictive power of as-developed ML was compared.
The primary goal of this study was to use demographic and neuropsychological data to
evaluate CDR scores and their application in dementia diagnosis. We generated different in-
house developed ML models using OASIS cross-sectional MRI data. Aside from classifying
subjects, another objective of this paper was to determine the data from neuropsychological
tests and demographic data that can be effectively used in the accurate diagnosis of dementia
in the affected patients.

2. Methods
2.1 Study design and participants
The study included 416 individuals who were enrolled for 434 MRI sessions. The cross-
sectional MRI data used in this study were acquired from the OASIS database (http://www.
oasis-brains.org/). The set was built on the basis of the collection of MRI data of the subjects
reported through the Washington University Alzheimer Disease Research Center (ADRC).

Out of 416 participants, there were 160 male and 256 female participants. All the
participants were aged between 18 and 96 years. For the present analysis, we included all
subjects. The structural MRI scans were T1-weighted magnetization. These were obtained
on a 1.5-T (Tesla) Vision Scanner. A high-resolution MPRAGE (Magnetization Prepared
Rapid Acquired Gradient Echo) sequence was used for examining the MRI data. For each
study participant, 3 to 4 distinct images were obtained. The MRI acquisition parameters
are as follows: flip angle (8) 5 10, TD (msec) 5 200, TE (echo time in msec) 5 4.0, TI
(msec) 5 20, TR (repetition time in msec) 5 9.7, orientation 5 sagittal, resolution
(pixels) 5 256 3 256 (1 3 1 mm), slice number 5 128 and thickness and gap (mm) 5 1.25
and 0 (Marcus et al., 2007).

The dataset consisted of 12 features, corresponding to both demographic and
neuropsychological data, which were recorded during the MR imaging acquisition. These
features include identification number, gender, handedness (left-handed or right-handed),
age, educational years, socioeconomic status (SES), MMSE, CDR, estimated total intracranial
volume (eTIV), normalized whole brain volume (nWBV), atlas scaling factor (ASF) and
magnetic resonance delay time. The above-specified features were assigned before the image
acquisition.

2.2 Baseline clinical assessment
The status of dementia was established and classified based on the CDR Scale as suggested
by earlier studies (Morris, 1993; Morris et al., 2001). We also made sure that the determination
of Alzheimer’s disease or its control status was centered only on the clinical approaches, with
no reference to psychometric performance. We also ensured that any possible alternate
causes of dementia were absent during data acquisition. There were three scores, namely,
SES, MMSE and CDR, present in the dataset. These scores, along with the other MRI
attributes, helped in uncovering the status of dementia. According to the Hollingshead Index,
SES refers to the social position of an individual. It was classified into two groups explicitly
into the lowest status and highest status. The lowest status corresponds to the value “0”,
while the highest status refers to “5” (Lynch & Kaplan, 2000).
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MMSE, also called as Folstein test, consists of a questionnaire. It is broadly used to assess
the cognitive ability of the inflicted patient. The MMSE score ranges from 0 to 30. A score
below 10 represents an extreme impairment, a score in the range of 10-19 implies moderate
dementia, score varying between 19 and 24 signifies an early stage of Alzheimer’s disorder
and a score above 25 corresponds to a normal healthy individual (Magni et al., 1996).

CDR is a five-point score that is determined through a semi-structured discussion with the
patient. Besides this, three other anatomical measures, namely nWBV, eTIV and ASF, have
also been implicated. These are employed to analyze the brain anatomical features in MRI
images, specifically relative to aging.

2.3 CDR as an assessment tool
To diagnose the dementia disorder, multiple cognitive impairments along with functional
impairments must be present. These impairments result from the cognitive impairments
when no sign of delirium or any other nonorganic aetiology (cf. major depression) is
associated. CDR is a tool to study various stages of dementia. It provides a five-point score,
which has been classified into six domains. Among these, memory is the only primary
subscale; while orientation, community affairs, judgment, problem-solving tasks, hobbies,
and personal care represent the five secondary subscales.

In the present study, we used the CDR score to determine whether a particular individual
is demented. The CDR score can also be used to assess the severity of dementia. Based on
collateral source and examination of the subject, an overall CDR score is obtained from each
of the six different domains. A global CDR score of 0 denotes no dementia whereas CDRs of
0.5, 1, 2 and 3 represent questionable deficit, mild, moderate and severe dementia,
respectively.

2.4 Machine learning modeling
ML methods have been widely used in the diagnosis of individuals suffering from MCI or
dementia. On the contrary, differentiating these categories through only one model has
remained challenging. For that reason, the objective of this studywas to use the demographic
and neuropsychological data to predict the status of the dementia disorder on the basis of
CDR scores (i.e. normal [CDR 5 0], very mild dementia [CDR 5 0.5; proxy for MCI], mild
dementia [CDR 5 1], moderate dementia [CDR 5 2] and severe dementia [CDR 5 3]) by
applying the various well-knownMLmodels. Through this, we were able to establish the role
of CDR in predicting the stage of impairment. At first, the clinical diagnosis was achieved by
considering scores based on neuropsychological features. Because of this, we trained the ML
algorithms in such a way that result in higher classification accuracy when predicting the
CDR values instead of the other diagnostic values.

The abundance of available data poses a great challenge for ML-based classification. The
volumetric data make it harder to train the learning algorithms in an appropriate duration of
time and reduces the classification accuracy of the resulting model. In order to create robust
and effective classification models while lowering training time, feature selection becomes a
crucial challenge (Onan & Koruko�glu, 2017). The following independent variables were used
in theML analysis: gender, age, years of education, SES,MMSE, eTIV, nWBVandASF, while
identification number, handedness and delay features were dropped. CDR testing variable
was the dependent variable, i.e. the response attribute.

Constructing anMLmodel means training anML algorithm that can predict the labels, i.e.
target variable among the set of independent variables, tune it and validate it. We applied
twenty supervised ML models as these resulted in more accurate results. Ensemble learning
can be used to provide more reliable classification strategies (Onan, Koruko�glu, & Bulut,
2017). It seeks to improve the predictive accuracy of a classification model by mixing the
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results of various learning algorithms (Onan, 2018a, b). The data preprocessing is the initial
step in MLmodeling. In concordance, we applied ten data pre-processing steps as reported in
one of our previous study (Khan, Zubair, & Sabri, 2019). Missing data is a very common and
challenging issue, mainly when dealing with real-world datasets. The effect of such data on
the ML model has revealed that the result gets degraded by assigning a random value to the
missing data (Khan & Zubair, 2019). In this study, we handled the class of missing data by
applying the “imputation bymedian”method. This is used because it operates extremelywell
for continuous data that comprises of outliers. During the model building stage, we applied
repeated stratified K-Fold cross-validation. This approach aids in improving the prediction
accuracy of the ML model. It repeats stratified K-Fold n times with distinct randomization in
every repeat. This further helps in reducing the noisy performance of the entire ML model.
The basic characteristic of cross-validation was twofold. Initially, it divided the data into two
segments to compare them statistically. Next, it evaluated the as-developed algorithms.

An imbalanced classification problem is a severe problem in cases where the data
distribution is usually biased across the target variable (Chawla, Bowyer, Hall, &
Kegelmeyer, 2002). It occurs inML applications in which one class (referred as the minority
class) has a minuscule number of instances while the other class (termed as the majority
class) has an enormous number of instances (Onan, 2019). It poses a challenge while
building an ML model. If not treated well, the imbalance classification leads to the
development of an ML model that ignores and result in a poor performing model with
lower accuracy. In the present study, we resolved the imbalanced classification problem
using Synthetic Minority Oversampling Technique (SMOTE). This is a data augmentation
technique that specifically deals with minority class (Chawla et al., 2002). There were four
classes of the target variable, i.e. CDR, consisting of normal, very mild, moderate and
severe demented subjects. In particular, there was a disparity found in the last two CDR
classes. Because of this, the built ML model resulted in poor performance and hence lower
accuracy. Hence, we employed SMOTE analysis, which oversampled the minority CDR
class. Oversampling only balances the class distribution; it does not add any extra
information to the ML model. Before testing each classifier, it was tuned with the
hyperparameters. Hyperparameters primarily help in structuring the ML model (ML
tuning is a kind of optimization problem). Post access to a collection of hyperparameters,
we tried to discover the correct combination of their values. This helps in examining the
performance metrics of the classifiers with maximum accuracy and other related metrics.

We worked on several ML classifiers but present only those models which gave more
accurate results. The following classifiers were employed while building an ML model.

2.4.1 Generalized linear models:.

(1) Logistic regressionCV: In the field of ML, it is a well-known mathematical modeling
algorithmapplied to epidemiologydatasets (Jayatilake&Ganegoda, 2021). It is based on
a regularized logistic regressionMLalgorithmand comprisesbuilt-in cross-validation. It
does optimization by employing the LIBLINEAR library (library for large linear
classification). This library is created for large linear-based classification (Fan, Chang,
Hsieh,Wang,&Lin, 2008). It supports both L1 and L2 type of regularization (Pedregosa
et al., 2011). This poses a great advantage over other classifiers.

(2) Passive aggressive: It is an online learning ML classifier. In such a type of classifier,
data are learned in a sequential manner instead of batch learning.While inputting the
data sequentially, the ML model is updated at every step. As it is a group of online
algorithms, here distinct ML classifiers, which are based on binary and multiclass
regression, classification, uniclass prediction and sequence prediction, are analyzed
specifically (Crammer, Dekel, Keshet, Shwartz, & Singer, 2006).
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(3) Perceptron: A perceptron ML classifier for classification employs linearly separable
functions. In other words, it performs classification and builds a predictive model
based on a linear-predictor function, which combines a group of weights along with
the feature vector.

(4) Ridge classifierCV: This classifier includes an in-built cross-validation characteristic,
where a generalized cross-validation technique is applied by default. This is
implemented in a leave-one-out manner (Pedregosa et al., 2011). The advantage of this
classifier over other classifiers is that it works efficiently when the number of features
is larger than the sample size (Pedregosa et al., 2011).

(5) Stochastic Gradient Descent (SGD): It is a type of optimization-based classifier. It
applies regularized linear ML algorithms together with SGD. It is based on
discriminative learning, where it is used to find the functions’ parameter values that
reduce the value of the cost function.

(6) eXtreme Gradient Boosting (XGB): This classifier implements gradient boosting
along with Decision Trees classifier to enhance the speed and hence the performance.

2.4.2 Naı€ve Bayes:.

(7) BernoulliNB: It is an implementation of Naı€ve Bayes ML algorithm, built specifically
for multivariate Bernoulli models (Fan et al., 2008). This classifier works smoothly on
discrete data.

(8) GaussianNB: Naı€ve Bayes classifier is a robust classifier built for predictive modeling
(Jayatilake & Ganegoda, 2021). It follows the Bayes’ theorem, which states that the
probability of a hypothesis can be calculated from its preceding probability (Khan &
Zubair, 2020a, b, c, d). Naı€ve Bayes classifier is further extended, which based on
Gaussian/normal distribution, called as GaussianNB (Pedregosa et al., 2011). In this,
only the mean and standard deviation is estimated from the training set, which is
hence the easiest to work with (Pedregosa et al., 2011).

2.4.3 Support vector machine:.

(9) LinearSVC: This is an SVM classifier, built on a linear kernel. Instead of libsvm
library, it implements LIBLINEAR library libsvm (Pedregosa et al., 2011). Besides, it
fits the training data, and as an output, it gives a hyperplane that segregates and
performs classification of the training data effectively. From this hyperplane,
classification and prediction of the input data are modeled.

(10) Support Vector Classification (SVC): This is also an SVM classifier, however, it is built
on a radial basis function (rbf) as a kernel. It implements libsvm library instead of
LIBLINEAR library. The multi-classification is dealt in a one-vs-one approach
(Pedregosa et al., 2011). With a sample size greater than tens of thousands, this
classifier fails to performwell as the fitting time gauges quadratically at the least with
the sample size (Pedregosa et al., 2011). This is amajor disadvantage if the sample size
is huge. The advantages of utilizing SVC include its potential to accurately predict
without sacrificing generalizability and its robustness to outliers (Alanazi, 2022).

2.4.4 Discriminant analysis:.

(11) Linear discriminant analysis (LDA): This is a classifier that has a linear decision
boundary. This boundary is built by fitting class conditional densities to the input
data, employing Bayes’ theorem. The predictive model is generated by fitting the
Gaussian density to every class/label (Pedregosa et al., 2011).
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(12) Quadratic discriminant analysis (QDA): This classifier has a quadratic decision
boundary. It means that this boundary is built by fitting class conditional densities to
the input data, employing Bayes’ theorem. Besides, the predictive model is produced
by fitting the Gaussian density to every class/label; which is similar to the working of
LDA (Pedregosa et al., 2011). The only difference between LDA and QDA lies in the
decision boundary.

2.4.5 Neighbor-based:.

(13) K-nearest beighbors (KNN): It is a supervised classification algorithm, based on
instance learning. It collects the training data instances and considers those
observations only that lies in the near vicinity of the collected instances that the KNN
classifier predicts (Zhang, 2016). It works well for smaller sample size but eventually
fails to perform well as the input data size grows. A prediction for a new observation
is achieved by first identifying themost similar occurrences and then aggregating the
output variable based on these occurrences (Jayatilake & Ganegoda, 2021).

2.4.6 Tree-based:.

(14) Decision Trees: It is a supervised ML classifier, which splits the data constantly
according to the passed parameters. It comprises nodes and leaves. The nodes are the
decision nodes from where the data are split. And the leaves are the one that
represents the final result. This classifier learns from a pattern, splits accordingly and
generates a decision output. The decision tree helps to build in such anMLmodel that
predicts the class/label by learning/training from the input decision rules, which are
determined from the input data variables (Amancio et al., 2014).

2.4.7 Ensemble-based:.

(15) Adaptive Boosting (AdaBoost): It is an ensemble-based classifier. Ensemble
classifiers are those ML classifiers that execute by the amalgamation of numerous
other ML classifiers (Khan & Zubair, 2020a, b, c, d). Through the ensembling
technique, an improved and well-performing model is achieved. The AdaBoost
classifier works effectively on the weak ML algorithms, thereby generating a robust
ML model as a result (Pedregosa et al., 2011).

(16) Bagging: This is also an ensemble-based meta-estimator. It fits the base algorithms
(distinct algorithms that are chosen to form an ensemble) on arbitrary subsets of the
input data. It aggregates the prediction results attained from each base algorithm,
either by averaging or voting approach to generate a final prediction as an output
result. It reduces the variance of a base algorithm by including randomization while
themodel is built, and then an ensembleMLmodel is created out of it (Pedregosa et al.,
2011).

(17) Extremely Randomized Trees (Extra Trees): It is also based on the ensembling
technique. The results attained from the numerous de-correlated decision trees are
aggregated in a forest-like structure, from where the output result is generated
(Geurts, Ernst, &Wehenkel, 2006). It more likely behaves on the patter of the Random
Forest classifier. The only difference lies in the way the decision trees are built within
the extra trees classifier.

(18) Gradient boosting: It creates an additive ML model in a staged manner and performs
optimization of random differentiable loss functions (Pedregosa et al., 2011).
Moreover, it produces a predictive model consisting of an ensemble of several
weak ML classifiers, in general decision trees (Natekin & Knoll, 2013).
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(19) Random Forest: This classifier is also based on the ensembling method. But it
includes only oneML classifier as a base estimator, i.e. several decision trees are used
to form a forest-like structure. It fits decision trees on distinct subsets, which acts as
an ensemble (Denisko & Hoffman, 2018). The algorithm’s generalization error is
determined by the power of the individual trees and the relationship between trees
(Onan, Koruko�glu, & Bulut, 2016).

2.4.8 Neural network:.

(20) Multi-layer perceptron (MLP): It is based on the architecture of a neural network. It
comprises of three node layers, i.e. input, hidden and output layer. It performs
classification using backpropagation for training the input data. Also, the
optimization of the log-loss function is done employing stochastic gradient descent
or lbfgs as a solver, which belongs to a class of quasi-Newton techniques (Pedregosa
et al., 2011).

2.5 Performance evaluation metrics
A performance evaluation method is an approach for evaluating an ML model. It is the
execution of measurement for the predictions made by a trained model on the test set. The
first metric is classification accuracy. It computes the proportion of correct predictions.When
predicting positive instances, precision measures how often the prediction is correct. It also
determines whether or not the model is correct. The true positive rate is defined as recall. It
counts the number of times the prediction is correct when the actual value is positive. The F1
score assesses the model’s performance by measuring the accuracy of the test set. It is the
harmonic mean that maintains a balance between precision and recall (Robinson, Tang, &
Taylor, 2015). It ranges from 0 to 1, where 0 signifies the worst F-measure while 1 denotes the
best F-measure.

3. Data analysis
ML models are probabilistic and statistical models that lookup for insights and obtain
specific trends and patterns in the data by employing computational algorithms (Khan &
Zubair, 2020a, b, c, d). The data analysis was achieved in two different stages: the first being,
sample characteristics and the second, exploratory data analysis (EDA).

The data analysis is a practice of collecting, discovering and presenting voluminous data
to determine the underlying patterns. It is vital for making data-centered decisions. EDA is a
method that analyzes the datasets and summarizes their chief properties. It is more of a
graphical and visual approach. An EDA is not the same as statistical visualization; even
though both of the terms are used interchangeably (NIST/SEMATECH, 2003). The statistical
analysis focuses only on one data characterization part. In contrast to this, EDA covers a
larger aspect. It follows amore straightforwardmethodology of letting the data itself disclose
its underlying structural model. The results of the performed analysis are discussed in the
below sub-sections.

3.1 Sample characteristics
The demographic description of the subjects used in the study is shown in Table 1. The
dataset comprises of subjects across the adult lifespan, i.e. from 18 to 96 years. The entire age
and their respective diagnostic properties are presented in Table 2.

From Tables 1 and 2, it can be deduced that of the elder subjects, 98 subjects turned up to
have a CDR score of 0, implying no dementia. While 100 subjects exhibited a CDR score
greater than 0 indicating to be inflicted by very mild to moderate dementia to moderate AD.
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Furthermore, the statistical description of the values included in the MRI dataset is given in
Table 3 (excluding the NaN values). It gives the central tendency and dispersion of the dataset
features.

3.2 Exploratory data analysis
It is a data analysismethod that employs numerous graphical techniques to perform a variety
of tasks such as, to uncover the dataset’s underlying structure, extracting essential features,

Factors
No of

patients Female Male

Age Education MMSE score
range

(in years) M ± SD
Range

(in years) M ± SD
Range

(in years) M ± SD

Normal
(CDR 5 0)

316 197 119 60-94 75.9 ± 9.0 8�23 14.5 ± 2.9 25–30 29.0 ± 1.2

Very mild
dementia
(CDR 5 0.5)

70 39 31 63-92 76.4 ± 7.0 6�20 13.8 ± 3.2 14–30 25.6 ± 3.5

Mild
dementia
(CDR 5 1)

28 19 9 62-96 77.2 ± 7.5 7�20 12.9 ± 3.2 15–29 21.7 ± 3.8

Moderate
(CDR 5 2)

2 1 1 78-86 82 ± 5.7 8�14 11 ± 4.2 15 15.0 ± 0.0

No dementia With dementia
Age
class Frequency Male Female Mean

Count of
CDR Male Female Mean

Count of CDR
0.5/1.0/2.0

0-20 19 10 9 18.53 0 0 0 0.0 0/0/0
20-30 119 51 68 22.82 0 0 0 0.0 0/0/0
30-40 16 11 5 33.38 0 0 0 0.0 0/0/0
40-50 31 10 21 45.58 0 0 0 0.0 0/0/0
50-60 33 11 22 54.36 0 0 0 0.0 0/0/0
60-70 40 7 18 64.88 0 6 9 66.13 12/3/0
70-80 83 10 25 73.37 0 20 28 74.42 32/15/1
80-90 62 8 22 84.07 0 13 19 82.88 22/9/1
>590 13 1 7 91.00 0 2 3 92.00 4/1/0
Total 416 119 197 41 59

Attributes
Age Educ SES MMSE CDR eTIV nWBV ASF

Count 434.00 235.00 216.00 235.00 235.00 434.00 434.00 434.00
Mean 51.36 3.18 2.49 27.06 0.29 1481.92 0.79 1.20
Standard deviation 25.27 1.31 1.12 3.70 0.38 158.74 0.06 0.13
Minimum 18.00 1.00 1.00 14.00 0.00 1123.00 0.64 0.88
25% 23.00 2.00 2.00 26.00 0.00 1367.75 0.74 1.11
50% 54.00 3.00 2.00 29.00 0.00 1475.50 0.81 1.19
75% 74.00 4.00 3.00 30.00 0.50 1579.25 0.84 1.28
Maximum 96.00 5.00 5.00 30.00 2.00 1992.00 0.89 1.56

Table 1.
Subjects’ demographic

status (M 5mean,
SD 5 STANDARD

deviation)

Table 2.
Diagnostic

characteristics of the
subjects according to

their age group

Table 3.
Statistical description
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identifying outliers and uncover anomalies and to determine optimum settings (Khan &
Zubair, 2020a, b, c, d). Before ML modeling, EDA was performed on the MRI data. It was
executed to gain insights and the strong and weak correlation among the various MRI
features.

Outliers are observation points that are completely distant from other observations.
Generally, a box-whisker plot is used as a visualization tool to locate the outliers in the data. It
shows the spread of quantitative data, which helps in making comparisons among attributes.
Thus, we can infer from Figure 1 that Educ, SES, MMSE, CDR, eTIV and nWBV feature
columns consist of outliers.

The linearity of the feature variables is determined by a density plot, which displays the
distribution of features. In this study, the density plot was used to study the skewness of the
various dependent variables. From the density plot, as given in Figure 2, we can note that
eTIV, nWBVandASF have an almost normal distribution.While the features, Educ, SES and
MMSE have multimodal distribution.

To construct an effectiveMLmodel, an indispensable condition is to remove the correlated
features. The correlation matrix using the heat map has been displayed in Figure 3. This is a
multivariate plot, which indicates whether or not any kind of dependency and correlation
exists amongst various features in the dataset. The heat map shows that eTIV and ASF have

Figure 1.
Box-Whisker plot
showing the outliers

Figure 2.
Density plot showing
the skewness of
dependent variables
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a strong negative correlation. However, a strong positive correlation can be seen between
gender and eTIV.

4. Results
4.1 Comparison of CDR with other variable features
In the present study, we contrasted various independent MRI features with CDRs (target
variable). Two types of plots, namely violin and KDE, were employed in the comparative
analysis. Table 4 presents the comparison result for the plots depicted in Figure 4a–h.

Among various attributes, the features such as gender, age, education, SES, MMSE, eTIV,
nWBV and ASF were found to be considerably related with that of CDR and helpful in the
prognosis of dementia. Our analysis shows that subjects aged between 70 and 80 years
display a high clustering of dementia than nondemented subjects.

4.2 Comparison of functioning of various as-proposed ML models in the study of dementia
progression
We employed ML algorithms to approximate the aggregate CDR score from a pool of dataset
features. In a given pool, we have presented the results of 20 selected ML classifiers. The
classifiers with mean test accuracy above 50% were included in the study. Table 5 presents
the accuracies of training, cross-validation and testing, their precision, recall and F1 values. In
this study, the mean prediction accuracies ranged from 52 to 94% (Table 5).

The comparative analysis of the tested predicted models is illustrated in Figure 5. The
classification accuracies calculated in Table 5 and its corresponding comparison chart shown

Figure 3.
Heat map showing the

correlation amongst
MRI features
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in Figure 5 emerge to be reliable. For theADdiagnosis, baggingwith random forest produced
a high accuracy of 93.67%, while BernoulliNB produced the lowest accuracy of 52.29%. In
terms of precision, bagging had a higher value of 90.00%, indicating that it is a better
diagnostic predictor. Table 5 shows that bagging and random forest have the highest recall,
both with 88.00%. The F1 score of 0.89, which is close to one for both bagging and random
forest, indicates that these ML models were a better diagnostic predictor for AD.

It can be attributed to the precise classification of the mild and moderate demented
subjects (CDR5 0.5 and CDR5 1.0). After dealing with the imbalanced classification using
SMOTE analysis and repeated stratified cross-validation, we obtained an improved
performance and hence an overall increase in the prediction results ML modeling for all
the 20 classifiers. We can see from the results that the cross-validation value accurately
displays the actual performance that we can envisage from our model in the real operation.

4.3 Bagging ensemble with random forest as a prediction model for dementia
The bagging classifier shows the highest prediction accuracy amongst varied employed
classifiers (Table 5 and Figure 5). This is because the Bagging approach improves a single
estimate by aggregating multiple estimates. It builds n classification trees from train data
using bootstrap sampling and then integrates their predictions to give a final metaprediction.

When compared to other nineteenMLmodels, this approach demonstrated improvements
in terms of accuracy, precision, recall and F1 score. We applied five ML classifiers, namely
Gradient Boosting, Random Forest, Decision Tree, LDA and Extra Trees, as a base estimator

CDR
Normal (0.0) Very mild (0.5) Moderate (1.0) Severe (2.0)

a Gender and
CDR

A higher
concentration of
female than male

A higher
concentration of
female than male

A higher
concentration of
female than male

An equal number
of female and male

b Age by
CDR

Range from 18 to
96, with a higher
concentration of
25-65 years old

Range from 60 to
100, with a higher
concentration of
70-80 years old

Range from 60 to
100, with a higher
concentration of
75-80 years old

Range from 70 to
85. (It contains
only 2 values out
of 436)

c Education
by CDR

Middle educated High educated In between middle
and high educated

Low educated

d SES by
CDR

High status Vary between high-
low status
(concentrating
towards high status)

Vary between high-
low status
(concentrating
towards low status)

Low status

e MMSE by
CDR

Higher
concentration
between 27 and 29

Higher
concentration
between 19 and 24

Higher
concentration
between 10 and 19

A score of 15 for
both of two values

f eTIV by
CDR

Higher
concentration
between 1300 and
1600

Higher
concentration
between 1300 and
1500

Higher
concentration
between 1400 and
1500

Higher
concentration
between 1300-1400
and 1500-1600

g nWBV by
CDR

Higher
concentration
between 0.8 and 0.9

Higher
concentration
between 0.7 and 0.8

Higher
concentration
between 0.65 and
0.75

Higher
concentration
between 0.65 and
0.69 and 0.7-0.075

h ASF by
CDR

Higher
concentration
between 10 and 13

Higher
concentration
between 11.5 and
12.5

Higher
concentration
between 11 and 13

Higher
concentration
between 11-12 and
12-14

Table 4.
Effect of various factors
on CDR in demented/
nondemented subjects
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for training a Bagging classifier. Amongst these, the improved performance was given by the
Random Forest after hyperparameter tuning and varying the number of estimators. The
mean cross-validation accuracy was 91.45%, mean prediction accuracy was around 93.67%,
with 90.0% mean precision, 88.0% mean recall and 0.89 F1 score. In general, the precision
correlates with the accuracy of the given ML model. It computes actual positive out of the
positive predicted cases employed in the study.While recall computes howmany of the actual
positives that are captured by theMLmodel are true positive. Furthermore, the F1measure is
the weighted average (harmonic mean) of both the precision and recall. Thus, in this study,
Bagging approach used with Random Forest considerably enhanced model stability by

Figure 4.
Graphical plots

showing the
comparison results of

MRI features with that
of CDR
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improving accuracy and, as a result, reducing variance, thereby eliminating the issue of
overfitting.

Figure 6 shows the detailed distribution of precision and recall measures of Bagging
classifier for multinomial classification of CDR dementia into normal, verymild andmoderate
classes. These measures set a base for the computation of overall class metrics.

It can be seen from Figure 6 that all three of the CDR classes possess clinically acceptable
accuracies. Tomake the classification results moremeaningful (clinically), the two subjects in
the dataset with severe dementia (CDR5 2.0) were merged with moderate dementia subjects.
This leads to a total of only three different CDR classes.

The precision value for the normal class was estimated to be 0.9867%. Therefore, about
98% of the subjects predicted as normal were normal in reality. On the other hand, the recall

ML classifier

Train
accuracy

(%)

Cross-
validation
accuracy

(%)

Prediction
accuracy

(%)
Precision

(%)
Recall
(%)

F1
measure

Generalized linear models
1 Logistic

RegressionCV
84.71 84.26 80.73 84.0 81.0 0.82

2 Passive
Aggressive

77.37 84.26 78.90 86.0 79.0 0.81

3 Perceptron 82.87 84.83 79.82 70.0 80.0 0.74
4 Ridge

ClassifierCV
77.06 84.83 79.82 86.0 80.0 0.82

5 Stochastic
Gradient Descent
(SGD)

74.01 83.29 75.23 69.0 75.0 0.72

6 XGB 100.0 84.83 86.24 88.0 86.0 0.87

Naı€ve Bayes models
7 BernoulliNB 55.96 83.29 52.29 60.0 52.0 0.55
8 GaussianNB 77.98 83.29 79.82 88.0 80.0 0.82

Support vector machine models
9 LinearSVC 80.73 83.29 81.65 79.0 82.0 0.77
10 SVC 85.32 84.83 78.90 87.0 79.0 0.81

Discriminant analysis models
11 LDA 77.37 84.83 78.90 88.0 79.0 0.81
12 QDA 84.40 83.29 79.82 86.0 80.0 0.81

Neighbor-based model
13 KNN 86.85 84.78 76.15 85.0 76.0 0.79

Tree-based model
14 Decision Tree 100.0 84.83 84.40 86.0 84.0 0.85

Ensemble-based models
15 AdaBoost 100.0 84.83 85.32 86.0 85.0 0.86
16 Bagging 94.20 91.45 93.67 90.0 88.0 0.89
17 Extra Trees 100.0 84.83 85.32 88.0 85.0 0.86
18 Gradient Boosting 99.70 83.65 86.24 88.0 86.0 0.87
19 Random Forest 97.0 86.76 88.07 90.0 88.0 0.89

Neural network
20 MLP 85.02 84.83 82.57 86.0 83.0 0.84

Table 5.
Machine learning
analysis for dementia
prognosis
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value for the normal class came out to be 0.9506. This means that almost 95% of the normal
subjects in the dataset were correctly predicted as normal. Similarly, the precision and recall
value was calculated for the other two classes: very mild dementia and moderate dementia.
For very mild dementia class, the numbers are 82.12% and 80.56%, respectively. While for
moderate dementia class, the numbers for precision and recall are 89.23 and 90.23%. Thus,
the mean precision and mean recall of the ML model comes out to be 90.0% 88.62%. In
general, a high precision value signifies that a classifier gavemore significant results than the
insignificant ones. While high recall value means that a classifier returned most of the

Figure 5.
Performance

comparison based on
accuracy (%)

Figure 6.
Precision and recall:

Showing the division of
predictions for an ML
model predicting CDR

into three classes
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significant results. This classification structure was however useful since the essential
clinical distinctions are amongst normal aging, very mild and moderate dementia. Hence, the
classification accuracies are relatively acceptable. The clinical adjustments which cannot
employ any computer-based algorithm fail to apply the results achieved from ML classifiers
other than bagging classifier or any tree or decision-rule based classifier. ThisMLmodel with
a bagging classifier can classify with a subset of the features characterized in the rule set for
each patient. Thus, making this characteristic clinically strong and that the generated ML
model as practically stable.

5. Discussion
The CDR Scale is a coherent and valid assessment feature that has been effectively used in
several dementia studies across the globe. The CDR-based scale exhibits notable interrater
reliability. It remained extremely correlated with other performance cognitive measures, like
theAbbreviatedMental Test, MMSEand comprehensive psychometric tests (Lim, Chin, Lam,
Lim, & Sahadevan, 2005; Otoyama et al., 2000).

In the present study, we applied the ML approach on a cross-sectional MRI-based data to
examine the usefulness of the CDR Scale in the prediction of dementia progression. We
compared its predictive power with other cognitive and functional measures. In addition to
this, we used the demographic and neuropsychological data to predict and classify the group
of demented and nondemented patients based on the CDR Scale. We observed that 100
(∼23%) out of 436 individuals progressed to dementia within the follow-up interval. When
compared with the two-year follow-up amnestic MCI subjects’ data fromAlzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset, our results were in line to ADNI analysis (i.e. 35%)
(Gomar, Bascaran, Goldberg, Davies, & Goldberg, 2011).

The computational analysis indicated that CDR alone as a testing variable (dependent
variable) could predict dementia progression with improved accuracy rate. These results
were consistent with earlier reported studies (Nakata et al., 2009; Daly et al., 2000). Moreover,
the classification accuracy with CDR orientation had better prediction rate of 93.67%. The
comparison of CDR subscale with that of cognitive and functional measures generated in the
present dataset showed an effective relationship with that of CDR. Also, as dementia disease
has a low longevity, this is why data are scarcely available in the aged patient (Barrett &
Burns, 2014; Prince et al., 2014). This adversely affects the ML modeling and hence
assessment of the disease. The findings of our study also displayed effective clinical power,
concerning the evaluation of clinical dementia using the visualization and for determining the
functional and cognitive impairment severity. The interrater reliability was lowest in the
domain categories of judgment and problem-solving and community affairs (0.77 and 0.79,
respectively) (Lim et al., 2007). These domains test higher cognitive function and necessitate
greater judgmental skills on the part of the assessor (Lim et al., 2007).

We discovered that the background history information reveals that about 60% of the
subjects weremiddle-educated while only 23%were found to be highly educated. In turn, this
may perhaps reduce generalizability in several ways. Certain individuals might involve in
complex activities that create small cognitive alteration much more apparent. The
educational background of the subjects is reflected in neuropsychological performance in
spite of the existence of cognitive alterations in complex activities of day-to-day life.

We found that the change from high socio-economic status (Score 1) to low status (Score 5)
ensued in a substantial decrease in the occurrence of dementia, i.e. from 77 to 0.68%.
Specifically, education and SES are related to each other with a greater extent. Higher to
moderate correlation level has been found amongst education and occupation-based SES
(Karp et al., 2004). Numerous modules of SES, such as income, education and working status,
might affect Alzheimer’s development in elderly patients (Evans et al., 1997).
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Folstein test for MMSE is a comprehensive analysis measure of cognitive impairment,
which has been used widely in dementia detection. Arevalo-Rodriguez et al. reported the
MMSE accuracy for Alzheimer’s detection in mild MCI subjects (Arevalo-Rodriguez et al.,
2015). They discovered that theMMSE score is not an essential tool in categorizing demented
or nondemented people (Cacchione et al., 2003). On the same line, we discovered that the
nondemented group acquired a higher score than the demented group.

The CDR Scale usefulness has been found to be in part correlated with the CDR
assessment process (Morris, 1993). The CDR evaluation depends on concise cognitive
assessment and the information acquired at the time of interview with collateral informant
concerning functional and cognitive changes compared to the earlier usual level (Hughes
et al., 1982; Kim et al., 2017). Because of this evaluation process, the CDR scores are not much
affected by factors like age, depression, education and practice effect, but these may affect
cognitive test scores (Morris, 1993; Kim et al., 2017; Shaji, Sivakumar, Rao, & Paul, 2018).
Several studies in line to this suggest that factors, like age, education, informant’s mental
well-being, relationship type with the patient, informant–patient relationship quality,
common or different domicile, frequency of contact, aid in predicting the quality of collateral
information source (Cacchione et al., 2003). Thus, the ML classifier and hence its entire
modeling increases the fraction of cases, which can be evaluated for severity of dementia in
usual community settings, at the same time, reducing the expenditure and time needed for
acquiring this information also.

Once the CDR Scale is categorized into normal, verymild, moderate and severe groups, the
classification accuracies obtained fromMLmodeling comes out to analogous to that achieved
from clinical experts employing a broad interview process. In many of the clinical settings,
this kind of classification method is satisfactorily acceptable. In fact, it builds the essential
distinctions amongst normal and demented patients and amongst mild and moderate to
severe dementia (Shaji et al., 2018). Data reduction, a technique provided byML, if not done, it
is more likely that medical experts would approximate dementia severity lower than the 80%
interrater consistency achieved by specialists (Shankle, Mani, Dick, & Pazzani, 1998). Thus,
the ML classifiers can play an essential role in the practical evaluation of the severity of
dementia in normal community settings.

In concordance with the previous studies, we found that ML algorithms can enhance the
clinical procedural guidelines and can restructure expenses of healthcare (Kim et al., 2017;
Ahmed, Mohamed, Zeeshan, &Dong, 2020). A study performed by Battineni et al. reported to
have a 98.6% accuracy using the hybrid modeling approach (Battineni et al., 2020a, b). The
study was based on OASIS longitudinal dataset, and it did not consider CDR as a target
variable (Battineni et al., 2020a, b). Although they reached to attain high accuracy while
building a predictive model, we cannot compare our results solely on the basis of accuracy
(Battineni et al., 2020a, b). In a similar scenario, Khan & Zubair achieved an accuracy of 87%
on Random Forest classifier employing the LDA as a dimensionality reduction technique
(Khan & Zubair, 2020a, b, c, d). They performed the analysis on the same OASIS cross-
sectional data, but the approach of predictive modeling was different (Khan & Zubair, 2020a,
b, c, d). Also, the capability of these algorithms is often constrained by inadequate patient
numbers. Thus, this problem emphasized the significance of creating simple and structured
data gathering methods so that the real potential of ML for rapid decision-support is not
retained back because of scarce data.

Our results show the advantage of employing the CDR Scale as a dementia prognosis tool
in clinical settings. Previous studies have also established that the CDR score has been
broadly used as a principle standard in multi-center clinical AD-related tests (Morris et al.,
1998; Sano et al., 1997), and its inter-rater consistency has also been established (Burke et al.,
1998; Schafer et al., 2004; Khan & Zubair, 2020a, b, c, d).
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5.1 Limitations
We were able to access a limited number of demented cases in this study due to the small
number of total subjects (<500). The sample size was limited to demonstrate statistical
validity between mild and moderate to severe dementia groups. This was a significant
limitation of the study presented.

6. Conclusion
We studied the use of demographic and neuropsychological data in the prediction of CDR
cognitive assessment scale by training, cross-validating and testingMLmodel.We employed
20 ML classifiers to differentiate subjects between normal, very mild and moderately
impaired with dementia. Our findings showed Bagging classifier (with Random Forest
algorithm as a base estimator) to provide the highest accuracy amongst all 20 applied ML
classifiers. Also, in terms of other performance metrics, i.e. precision, recall and F1 measures,
the Bagging classifier resulted in improved performance. With proper and sequential data
preprocessing techniques, training, cross-validating and testing approach, dealing with the
imbalanced classification and further tweakingwith the right set of hyperparameters, ourML
modeling gave a higher accuracy as a result. We employed SMOTE analysis for handling
imbalanced classification and repeated stratified cross-validation methodology. Through
this study, we were able to determine that the CDR Scale may provide beneficial information
to predict dementia in the individuals in actual clinical settings. The experimental analysis
reported in this study implies that artificial intelligence can be used effectively, in particular,
to computerize the variables of clinical diagnosis. This can further aid in providing
significant patterns and insights, where features are indispensable for such identification. In
the future, hybrid modeling would be used in research. In a moderate clinical setting, an
analytical approach like this will be useful in detecting the prognosis of suspected or
diagnosed dementia or AD patients. Thus, with proper training of medical practitioners, this
can be employed in the community follow-up of afflicted patients.
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