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Abstract
Purpose – Advanced driving assistance system (ADAS) has been applied in commercial vehicles. This paper aims to evaluate the influence factors of
commercial vehicle drivers’ acceptance on ADAS and explore the characteristics of each key factors. Two most widely used functions, forward
collision warning (FCW) and lane departure warning (LDW), were considered in this paper.
Design/methodology/approach – A random forests algorithm was applied to evaluate the influence factors of commercial drivers’ acceptance.
ADAS data of 24 commercial vehicles were recorded from 1 November to 21 December 2018, in Jiangsu province. Respond or not was set as
dependent variables, while six influence factors were considered.
Findings – The acceptance rate for FCW and LDW systems was 69.52% and 38.76%, respectively. The accuracy of random forests model for FCW
and LDW systems is 0.816 and 0.820, respectively. For FCW system, vehicle speed, duration time and warning hour are three key factors. Drivers
prefer to respond in a short duration during daytime and low vehicle speed. While for LDW system, duration time, vehicle speed and driver age are
three key factors. Older drivers have higher respond probability under higher vehicle speed, and the respond time is longer than FCW system.
Originality/value – Few research studies have focused on the attitudes of commercial vehicle drivers, though commercial vehicle accidents were
proved to be more severe than passenger vehicles. The results of this study can help researchers to better understand the behavior of commercial
vehicle drivers and make corresponding recommendations for ADAS of commercial vehicles.
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1. Introduction

Transportation system has caused a lot of concern in many
aspects including efficiency (Gao et al.,2020; Wu et al., 2020; Li
et al., 2019), environmental protection (Gao et al., 2021; Xu et al.,
2021; Qu et al., 2020) and safety (Meng and Qu, 2012; Kuang
et al., 2015; Shi et al. 2021). Due to the serious consequences of
road accidents on property and human life, road safety has been
widely studied by relevant researchers for decades. Road accidents
is expected to increase from the ninth factor of mortality to the
seventh by 2030, which cause approximately 1.8 million deaths
per year (World Health Organization, 2018). In addition, when
focusing on accident severity and consequences, those involving
large-size commercial vehicles can bring more severe
consequences and further influences.
According to previous researches, approximately 90% of

road crashes are related to human factors (Treat et al., 1979).
Various efforts have been made to better understand drivers’
driving behavior to improve road safety (Liu et al., 2020;

Wang et al., 2020; Cao et al., 2020). Commercial vehicle
drivers are full-time drivers with the skills to safely operate large
vehicles. To improve commercial vehicle drivers’ behavior and
safety, various advanced driving assistance systems (ADAS)
have been widely installed in commercial vehicles. Among all
these functions of ADAS, the most common ones are forward
collision warning (FCW) and lane departure warning (LDW)
systems.
The effectiveness of FCW and LDW systems has been

evaluated by various studies ever since the application of ADAS
(Pan et al., 2021; Zhao et al., 2021). Shinar and Schechtman
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(2002) carried out an experiment containing 43 drivers. They
are required to drive vehicles without FCW system for
threeweeks and with FCW system for another threeweeks.
After the experiment, the time of drivers spent in short
headways (<0.8 s) reduced by approximately 25%, and the
time of drivers spent in safer headways (>1.2 s) increased by
nearly 20%. A real-world driving trial containing two scenarios
(with FCW system and without FCW system) was carried out
by Birrell et al. (2014). They found that the average time
headway increased from1.5 s to 2.3 s after the installation of the
system. The performance of the FCW system was evaluated by
Yang and Kim (2018) in public transportation. The results
showed that 75% of the drivers have significant differences in
driving behavior after the installation of FCW system and 40%
of them have confidence in this system. Puente Guillen and
Gohl (2019) proposed a comfort boundary (CB) model to
select appropriate warning timing for FCW system. They
found that participants had a higher acceptance of the system
with the warning outside theCB.
A research by LeBlanc (2006) indicated that the application

of LDW system can bring positive influence on drivers. The
frequency of lane departure behavior decreased by 63%, and
the use of turning signals become more frequent. Scanlon et al.
(2015) explored the LDW system by microsimulation; they
found a 26% reduction of lane departure crashes for those
vehicles with LDW systems compared to those without LDW
systems. Saito et al. (2016) evaluated a driver assistance system
with a dual control scheme by using driving simulators. Three
scenarios were included, and 20 students participated in
this study. The results show that the system can provide LDW
signals timely under fatigue driving situation and conduct
safety control rapidly. After considering the factors including
severity, vehicle type and driver demographics, Cicchino
(2018) indicated that vehicles equipped with LDW were
involved in fewer crashes than those without LDW.Gaspar and
Brown (2020) conducted a study to examine the effectiveness
of LDW as a function of driver distraction. They found that
LDW systems are more effective when drivers are distracted.
Drivers with LDW respond faster and has less severe lane
departures than those without LDW.
As well as measuring the performance of FCW and LDW

systems, some efforts have also beenmade to explore the key factors
influencing drivers’ acceptance of these two systems. A
comprehensive review relating to FCW systems was carried out by
Vahidi and Eskandarian (2003). After the review, warning timing
was found to be a significant influence factor on driver acceptance.
Another study byMuhrer et al. (2012) applied driving simulators to
evaluate drivers’ react on an enhanced FCW system with auto
braking. Based on the drivers’ gaze behavior, they argued that the
application of this system did not lead to a stronger involvement in
secondary tasks. However, Wege et al. (2013) reported a negative
adaptation of FCW system in their study based on 30 Volvo trucks
with nearly 40,000h and four million kilometers. The results
indicated that FCW system may cause dangerous situations due to
an “eyes-off-road effect” caused by the visual signals duringwarning
periods.
Drivers with different age, gender and driving skills may have

different attitude toward ADAS. A study conducted by
Shaheen and Niemeier (2001) indicated that ADAS can
provide support for elderly drivers on motion perception,

peripheral vision, selective attention and information process
speed, which can significantly improve diving safety for elderly
drivers. Li et al. (2015) evaluated the driver acceptance of
ADAS in Chinese road conditions. They found that there are
significant differences in driver acceptance with the variation of
driver gender and driver age. By considering the influence of
age, gender and road environment, Son et al. found that drivers
with different age and gender have significant differences on the
acceptance of ADAS. Female drivers and young drivers have
less acceptance on ADAS, while road environment also have
influence on drivers’ acceptance.
Based on the researches, the application of FCW and LDW

systems can reduce crashes significantly (Kusano and Gabler,
2015). On the other side, most commercial vehicle drivers are
skilled ones and may have different attitudes toward ADAS
under different situations. A single warning standard for all
situations without considering various factors may lead to the
decline of commercial driver acceptance. The exploration of
influencing factors on commercial vehicle drivers’ acceptance
toward FCWand LDWsystems is necessary.
Therefore, smarter systems have been investigated to improve the

acceptance by considering surrounding environments and drivers’
reaction. The intelligent algorithms are mainly divided into two
categories. One category contains several risk models in one system
and selects the most suitable one based on drivers’ real-time
behavior (Hirose et al., 2004). One example of this category is the
study carried out by James et al. (2004). They developed an FCW
model based on driver reaction and acceptance. The model can
select the most adequate risk model based on drivers’ brake
behaviors. Another category applies one risk model with a
continuous adjustable parameter. The parameter value can be
adjusted based on autonomic learning of driving behavior
(Rajaonah et al., 2008; Chang andChou, 2009).Wang et al. (2015)
applied this kind of method and proposed an FCWmodel with an
adjustable parameter. The model can match driver characteristics
throughout a long driving period and adjust themodel parameter in
a timelymanner.
Many efforts have been made to explore the influence factors

of driver acceptance on FCW and LDW systems and improve
system efficiency. However, the majority of the studies focus on
private cars; few studies have paid attention to commercial
vehicle drivers’ acceptance on FCW and LDW systems.
Targeted ways to improve FCW and LDW systems for
commercial vehicles are rare. It is essential to investigate the
characteristics and influence factors of commercial vehicle
driver acceptance on FCW and LDW systems to help develop
more targeted systems for commercial vehicles.
This article focuses on exploring the influence factors of

commercial drivers’ acceptance onFCWandLDWsystems.Driver
response and several relevant variables including driver
characteristics, vehicle status and road environments were collected
and analyzed. A random forests model was applied. The results of
this study can help system designers better understand the influence
mechanismofFCWandLDWsystems on commercial vehicles and
discover the differences of commercial vehicle drivers’ acceptances
on FCW and LDW systems. The findings can help make
corresponding recommendations for ADAS of commercial vehicles
and design a differentiated ADAS system for commercial vehicles
basedon various factors.
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2. Method

2.1 Data extraction
The naturalistic driving data applied in this study is from the
intelligent data platform of commercial vehicles in Jiangsu
province. In Jiangsu province, all commercial vehicles are
required to install an ADAS system to improve safety. The
system state and commercial vehicle drivers’ behavior are
recorded and uploaded to the official platform for further
analysis and research. In this study, FCW and LDW warning
information from 24 vehicles (12 buses and 12 trucks) from
November 1 to December 21 in 2018 were applied. There were
24male drivers since themajority of commercial vehicle drivers
are male. Nine young drivers (18–35 years old), 11 mid-aged
drivers (35–50 years old) and four older drivers (more than
50 years old) were involved in this study. Each record contains
several variables including driver ID, warning start time,
warning end time, vehicle speed before warning, vehicle speed
after warning, vehicle steering angle, vehicle GPS. After
preprocessing, 1,706 FCW data and 43,221 LDW data were
finally obtained.
To identify the location of each warning, we transferred the

GPS data to Baidu coordinate system and applied Baidu map
API service. GPSspg xGeocoding software was used, and the
road type (urban road or freeway) were finally obtained.
Driver acceptance of FCW and LDW systems was measured

by their response to warning signals. For FCW system, driver
mainly respond to the signal by decelerate vehicle speed. The
driver was regarded as “response” if the vehicle speed before
FCW signals is larger than the speed after FCW signals,
otherwise, the driver is regarded as “no response.” For LDW
system, driver mainly respond the signal by correct the direction.
The driver was regarded as “response” if the steering angle is
larger than 0, otherwise, the driver is regarded as “no response.”

2.2 Random forests algorithm
With the development of computer science, various machine
learning methods have been applied in driver behavior analysis
and road safety researches due to the accurate fitting results and
outstanding performance of handling large amounts of data
(Ngxande et al., 2017; Yao et al., 2018). Compared to
traditional generalized linear models, machine learning
methods do not need any pre-hypothesis or any equations,
which can avoid the limitations of expression forms and
improve accuracy.
Random forests algorithm proposed by Breiman (2001) was

applied in this study. Compared to other machine learning
methods, for the problem of fewer types of features, random
forests performs better in most and has higher interpretability by
calculating the importance of influence factors with out of bag
(OOB) data. Random forests consists of numerous decision trees.
Each decision tree is independent. The result of random forests
can be obtained by combining the results of all decision trees.

2.2.1 Decision trees
Before explaining random forests, decision tree is first
introduced. A decision tree can also be called a classification
tree or regression tree, depending on the output variable type
(classified variable or continuous variable). It is the subunit of
random forests (Quinlan, 1987). Figure 1 shows an example of
binary decision tree. In a decision tree, each internal node

means a “test” on an attribute, each branch means the different
result of the test and each leaf node means a class label. The
process from root to leaf represents classification rules.
Decision rules play the most important role during the

process of tree establishment (Lunetta et al., 2004). In this
study, Gini index was applied to measure the purity of the data.
Gini index can help to confirm the best criterion of internal
nodes and choose the best split point. This rule is one of the
most widely used methods for data purity measurement and
can also be used to divide the characteristics. Equation (1)
shows the expression of a Gini index:

Gini Dð Þ ¼ 1�
Xm

i¼1

pi2 (1)

Gini(D) represents the probability that the categories of two
samples are inconsistent when randomly select 2 samples from
data set D. pi represents the probability of category i in the
whole data set D. If condition A is selected as a classification
standard, theGini index after the split can be expressed as:

GiniAðDÞ ¼
Xn

j¼1

jDj j
jDj � GiniðDÞj (2)

TheGini index gain value can be calculated as:

DGini Að Þ ¼ Gini Dð Þ �GiniA Dð Þ (3)

Therefore, the largestDGini(A) was selected when choosing the
best criterion of internal nodes.

2.2.2 Random forests
Decision tree has been proven to be effective for classification
problems. However, in most practical problems, a single
decision tree cannot obtain a satisfactory result. Therefore, the
concept of ensemble was applied to solve the inherent
shortcomings of a single decision tree. The random forests
algorithm is then proposed based on this concept. In random
forests, we conduct several decision trees and combine them
together. The result of random forests is obtained by
considering the results of all decision trees.
When using random forests, there are mainly four steps. The

detailed steps were summarized as follows:

Figure 1 Structure of a binary tree
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1 Step 1: For each decision tree of the random forests,
bagging method is applied for the selection of training
set. This method draws the training set by sampling
with replacement, which is one unique characteristic of
random forests. After selecting, about one third of the
data is left out of the samples. These are called out-of-
bag (OOB) data (Breiman, 1996). This kind of data
can be used in the following steps to evaluate the
model accuracy and estimate the importance of the
variables.

2 Step 2: After sample selecting, the input and output
variables are run down the tree. Each tree is grown to the
maximum depth to draw the final result of the decision
tree. In the end, the results of the random forests are
obtained by averaging all the results of the individual
decision trees. The generalization error of random forests
is limited since there are a large amount of decision trees.
In other words, random forests can handle over-fitting
problems superiorly.

3 Step 3: After getting the results, OOB data is applied to
estimate the OOB error. Cross-validation or separate test
set is not necessary in random forests since the unbiased
estimate of the result has already been estimated internally
during the run by estimating OOB error [37]. The OOB
error of the prediction can be calculated by:

ER ¼ n�1
Xn

i¼1

I YOOB Xið Þ 6¼ Yi

� �
(4)

where I(�) represents the indicator function; n represents the
number of trees in the random forests; Xi represents the input
of ith OOB data; Yi represents the actual output of ith OOB
data; and YOOB(Xi) represents the predicted output
calculated by random forests.

4 Step 4: At the end of the algorithm, the importance of
each variable should be calculated. Permutation
importance and GINI importance are two common
methods for the calculation. If the input variables have
both classified variables and continuous variables, the
accuracy of permutation importance is a little higher than
GINI importance. Therefore, we apply permutation
importance in this study. VIMOOB is used to represent
the permutation importance of the variable. It can be
calculated by:

VIMOOB ijð Þ ¼

Xnjo

p¼1
F Yp ¼ Yj

p;Xi

� �

njo
(5)

where F(�) represents the indicator function; njo represents the
number of OOB data in jth decision tree. Yp represents the
actual output of pth OOB data; Yj

p;Xi
represents the predicted

result after Xi is permuted.
Finally, the permutation importance can be calculated by:

VIMOOB ið Þ ¼ 1
n

Xn

j¼1

VIMOOB ijð Þ (6)

Python software was used in this study to develop the random
forests algorithm and calculate theOOB error and importance.

3. Results

In this part, both FCW and LDW records and relative variables
were applied to the random forests. Among various variables,
significant variables were preliminarily screened by variance
analysis. After the selecting, six significant variables were used
in random forests for FCWandLDW records, separately.

3.1 Analysis of drivers’ acceptance on forward collision
warning system
Total, 1,706 valid FCW records were identified during 51days.
After variance analysis, six significant variables including
vehicle speed, warning hour, duration time, road type, driver
age group and vehicle type were selected for the random forests.
Among these variables, vehicle speed represents the speed
when the alarm signal starts. Warning hour represents the
alarm time, from 1 o’clock to 23 o’clock. Duration time means
the time interval from warning start time to warning end time.
Detailed characteristics of each variable were listed in Table 1.
In Table 1, SDmeans standard deviation.
Driver acceptance was measured by driver reaction, which was

separated as a binary variable, 0 means no response and 1 means
response. In total, 1,186 response cases were found among 1,706
records. The acceptance rate of FCWwas 69.52%.
Random forests was then conducted using the above variables.

In this method, two parameters, m_try and n_tree, should be
tuned to obtain an optimal performance. m_try means the
number of input variables in each decision tree. n_tree means the
number of decision trees in a random forests algorithm.
For the selection of m_try, the common value is confirmed

by
ffiffiffiffiffi
N

p
, where N represents the total number of input variables.

In this case, six different variables were applied as inputs, so the
value ofm_try can be 2 or 3. In addition, n_tree is identified as a
value that provides stable OOB errors. The common value of
n_tree can be confirmed by comparing the OOB error of
different values from low to high. To achieve the most suitable
value, a line graph was drawn to represent the accuracy
tendency (1-ER) when n_tree increases. Both m_try = 2 and
m_try = 3were drawn in this figure.

Table 1 Statistics of FCW record data characteristics

Variable Maximum Minimum Average SD

Vehicle speed (km/h) 100 30 60.57 19.76
Warning hour 23 0 13.00 3.97
Duration time (s) 5 1 3.05 1.19

Variable Type Frequency
Road type 1 (urban road) 1407

2 (highway) 299
Driver age group 1 (young) 670

2 (mid-aged) 518
3 (elder) 518

Vehicle type 1 (passenger car) 1066
2 (truck) 640

Driver reaction 0 (no response) 520
1 (response) 1186
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From Figure 2, we can find that the accuracy increases with the
increase of n_tree in the beginning and then gradually becomes
stable. The accuracy reaches themaximum value whenm_try =
2 and n_tree = 194. Therefore, m_try = 2 and n_tree = 194
were chosen in the final random forests algorithm. The final
accuracy of the model is 0.816. It is relatively high, and the
results of themodel can be used for further analysis.
After running the random forests, the permutation importance

of each variable was also calculated. The normalized importance
for each factor is displayed in Figure 3. Among all influence
factors, vehicle speed is found to be the most important variable.
The importance value is 0.37. Duration time and warning hour
also have significant influence on driver reaction. The values are
0.20 and 0.17, respectively. Road type has the lowest importance
among 6 variables – the importance is only 0.03.
Three key variables, vehicle speed, duration time and

warning hour, were selected for further analysis of the potential
characteristics of driver reaction and relevant influence factors.

3.1.1 Vehicle speed
The relationship between vehicles speed and acceleration after
FCW signals is shown in Figure 4. Vehicle speed represents the
speed when the alarm signal starts, while acceleration

represents the average acceleration from warning start time to
warning end time. Drivers’ reaction is more obvious if the
absolute value of acceleration is larger.
From Figure 4, we can conclude that most drivers have an

obvious reaction to FCW signals when the initial vehicle speed
is low (30–60km/h). The degree of driver reaction reduced
with the increase of vehicle speed. When vehicle speed is larger
than 60km/h, the acceleration value becomes small (less than
�2.00m2/s).
Therefore, the commercial vehicle drivers’ acceptance of

FCW system decreases with the increase of vehicle speed. It
may be attributable to the fact that commercial vehicles have
greater size and weight than private cars. Sharp decelerate
during high vehicle speedmay causemany other potential risks.
Drivers prefer to maintain the speed and do not brake hard
when the original speed is high.

3.1.2 Duration time
The number of FCW records for two types of responses were
counted based on different duration time (from 1 s to 5 s) and
are shown in a heatmap (Figure 5). In this heatmap, darker
color represents higher percentage. Most duration times are 1 s
(28.83%) or 2 s (31.45%) when drivers respond to the FCW

Figure 2 OOB error tendency under different parameters

Figure 3 Normalized variable permutation importance of FCW
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signals, while the duration times are usually 3 s and 4 s if the
drivers failed to respond to FCW signals, which indicates that
drivers did not take any steps to respond after a long warning
period.
Therefore, we can find that commercial drivers prefer to

respond to FCW signals right away, mainly in less than 2 s. If
they choose to ignore the warning, longer warning signals will
not have a significant effect.

3.1.3Warning hour
Figure 6 shows the histogram of warning hour. In this Figure,
eight time periods (each period contains 3 h) were defined
during one day. The percentage of respond and no respond in
each time period was calculated and drawn as a bar.
From this figure, we can observe that commercial vehicle

drivers have higher response percentage on FCW signals
between 6:00 and 18:00, which are mainly falls within daytime
periods. The percentages are all larger than 70% during these
time periods. In other words, commercial vehicle drivers have
higher response percentages on FCW signals during daytime
than at night. For one side, drivers may easier to identify and

respond to the danger situations warned by FCW systems when
the light condition is good. While the day becomes dark, they
may harder to make decisions in a short time period and prefer
to trust their own judgements. For the other side, FCW systems
may generate more false alarms when the light condition is
poor.
Therefore, three key influence factors, vehicle speed,

duration time and warning hour, are found affecting
commercial drivers’ acceptance toward FCW systems.
Commercial vehicle drivers have higher acceptance of FCW
systems during daytime when commercial vehicles’ speeds are
relatively low. The acceptance may decrease at night when
commercial vehicles’ speeds are relatively high. They respond
to FCW systems sensitively and timely in most instances,
usually within 2 s.

3.2 Analysis of drivers’ acceptance on lane departure
warning system
After the analysis of FCW system, commercial vehicle drivers’
acceptance toward LDW system have also been discussed.
Total, 43,221 valid LDW records were collected in this case.
After variance analysis, six significant variables including
vehicle speed, warning hour, duration time, road type, driver
age group and weather were selected for the random forests.
Detailed characteristics of LDW records were listed in Table 2.
In this case, only one factor, weather, is different from FCW

analysis. 1 means good weather (sunny, cloudy) and 2 means
bad weather (rain, snow). For LDW records, 16,793 response
cases were found among 43,221 records. The acceptance rate
of LDW was 38.76%, which is significantly lower than FCW
records. We can speculate that FCW records have higher
acceptance than LDW records since FCW records means more
urgent situations.
Random forests was also conducted in this part. Six different

variables were applied as inputs, so the value of m_try can also
be 2 or 3. To achieve the most suitable value for LDW analysis,
we also drew a line graph to represent the accuracy tendency (1-
ER) when n_tree increases. Both m_try = 2 and m_try = 3 were
considered when drawing this Figure 7.
In the random forests for LDW records, the accuracy reaches

the maximum value when m_try = 2 and n_tree = 110.
Therefore, these two values were selected as the parameter for

Figure 4 Relationship between vehicle speed and acceleration

Figure 5 Heatmap of duration time
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random forests algorithm. The final accuracy of the model is
0.820 and can be used for further analysis.
Normalized permutation importance of each influence

variable for LDW signals is shown in Figure 8. For LDW
signals, duration time and vehicle speed are most important
ones. Duration time has the importance of 0.30, and vehicle
speed has the importance of 0.29. Another important variable is
driver age, with the importance of 0.26. These three variables
were chosen for further analysis of the potential characteristics
of driver reaction and relevant influence factors for LDW
systems.

3.2.1 Duration time
The number of LDW records for two types of responses were
also obtained based on different duration time. The heatmap
was show in Figure 9. From this figure, we can find that most
respond cases fall in the duration time of 3 s (31.15%) and 4 s
(33.06%). For no respond cases, most duration time are
between 3 s and 5 s. Therefore, we can conclude that the
reaction time of drivers for LDW signals are relatively slow than
FCW signals. In addition, longer duration time has little efforts
on commercial vehicle drivers’ acceptance since most no
respond cases are with longer duration time.

3.2.2 Vehicle speed
The relationship between vehicle speed and driver response
type was measured and is shown in Figure 10. Based on this
figure, we can find that commercial vehicle drivers’ respond
percentage increases gently as vehicle speed increases. From
29.95% under 30–40km/h to 45.59% under 100–110km/h. In
other words, the acceptance of commercial vehicle drivers on
LDW systems increases with the increase of vehicle speed.

3.2.3 Driver age
Different from FCW systems, another important factor
influencing the acceptance of LDW systems is driver age.
Figure 11 indicates the respond percentage for different age
groups. The respond cases of young, mid-aged and elder
drivers for LDW signals are 33.46%, 41.26% and 44.84%,
respectively. The percentage increases with the increase of age.
In addition, all the respond cases for three age groups are less
than 50%. Therefore, we can find that commercial vehicle
drivers’ acceptance for LDW systems is relatively low. The
acceptance rate increases with the increase of driver age.
Therefore, duration time, vehicle speed and driver age are

three key influence factors affecting commercial vehicle drivers’
acceptance toward LDW systems. Commercial vehicle drivers’
acceptance toward LDW systems are significantly lower than
FCW systems. Moreover, the response of drivers to LDW
signals are relatively slow. Drivers have higher acceptance of
LDW systems when vehicle speed is higher and driver age is
older.

4. Conclusion

Drivers’ acceptance of ADAS has been a hot topic of concern in
road safety and human factors research. Some efforts have been
made to explore drivers’ attitudes toward ADAS in different
situations and identify the significant contributing factors.
However, the majority of the studies only paid attention to
private cars; few of them focused on commercial vehicles,
which is inadequate since commercial vehicles have different
vehicle structures (size, weight, etc.) from private cars, and
commercial vehicle drivers’ acceptance of ADAS may be
different from normal drivers. Therefore, this paper focused on

Figure 6 Histogram of warning hour

Table 2 Statistics of LDW record data characteristics

Variable Maximum Minimum Average SD

Vehicle speed (km/h) 109 30 70.26 19.69
Warning hour 23 0 13.04 4.96
Duration time (s) 5 1 3.44 1.17

Variable Type Frequency
Road type 1 (urban road) 29446

2 (highway) 13775
Driver age group 1 (young) 16250

2 (mid-aged) 20635
3 (elder) 6336

Weather 1 (good weather) 31088
2 (bad weather) 12133

Driver reaction 0 (no response) 26428
1 (response) 16793
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exploring the acceptance of commercial vehicle drivers’ on
ADAS. Two most widely used functions, FCW and LDW
systems, were chosen for the analysis and the contributing
factors were explored by developing a random forests model.
FCW and LDW records and relevant variables of 24

commercial vehicles (12 buses and 12 trucks) were collected
from the intelligent data platform of commercial vehicles in
Jiangsu province. The data includes 51days from 1 November
to 21 December in 2018. Total, 1,706 FCW records and
43,221 LDW records were finally selected. From the records,
we can calculate that the acceptance rate of FCW is 69.52%
and the acceptance of LDW is 38.76%. The result indicates
that the acceptance of FCW is significantly higher than LDW.
This mainly because that FCW is a high-level and more severe
warning, while LDW is a relatively low-level warning and
mainly for regulate driver behavior. Drivers prefer to respond to
FCW inmost situations and sometimes ignore LDW signals.
Random forests was applied in this study. Two parameters

m_try and n_tree were tuned, and the accuracy of FCW and

Figure 8 Normalized variable permutation importance of LDW

Figure 9 Heatmap of duration time

Figure 7 OOB error tendency under different parameters
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LDW records after tuning are 0.816 and 0.820, respectively.
The accuracy is relatively high and can be used for further
analysis. The permutation importance of each variable was
calculated and normalized for both FCWand LDWrecords.
For FCW records, vehicle speed is found to be the most

important variable affecting drivers’ acceptance with the
importance of 0.37. Duration time and warning hour are another
two key factors with the importance of 0.20 and 0.17,
respectively. After further analysis, we found that commercial
vehicle drivers’ acceptance of FCW system decreases with the
increase of vehicle speed. They prefer to respond to FCW signals
during daytime and in a timely manner, usually in less than 2 s.
Therefore, it may be beneficial to reduce the threshold of FCW
systems during daytime under low vehicle speed and increase the
threshold of FCW systems at night when vehicle speed is high.
This may improve the acceptance of the system by commercial
vehicle drivers. The alarm form for FCW warnings can be short
and rapid signals since the responses to FCWsignals are timely.
For LDW records, duration time and vehicle speed are most

important ones. Duration time has the importance of 0.30 and

vehicle speed has the importance of 0.29. Another important
variable is driver age, with the importance of 0.26. After further
analysis, we found that the acceptance rate of LDW system is
low and commercial vehicle drivers’ response to this system is
relatively slow. The acceptance rate is higher when vehicle
speed is higher and driver age is older. Therefore, to improve
the effectiveness of LDW, we can improve the threshold to
reduce the warning frequency. The threshold can decrease with
the increase of driver age and vehicle speed. The warning of
LDW can use gentle and longtime signals to help drivers adjust
vehicle status smoothly and avoid other risk situations.
Therefore, this paper investigated commercial vehicle drivers’

acceptance toward ADAS under different situations and gave
several suggestions on commercial vehicle ADAS designment.
The results can help researchers better understand the behavior
of commercial vehicle drivers and make corresponding
recommendations for ADAS of commercial vehicles.
In this study, the accuracy of ADAS is regarded as relatively

high and be consistent at all times since Mobileye is a leading
company of ADAS systems and has high quality of products.
However, we did not make specific measurements to obtain the
actual accuracy of the system. In the future, we will try to
identify the accuracy of FCW system under different situations
and combine commercial vehicle drivers’ attitude with system
accuracy to further understand the characteristics.
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