Search results

1 – 10 of over 2000
Article
Publication date: 19 December 2023

Waqar Khan Usafzai, Emad H. Aly and Ioan Pop

This paper aims to study a non-Newtonian micropolar fluid flow over a bidirectional flexible surface for multiple exact solutions of momentum boundary layer and thermal transport…

Abstract

Purpose

This paper aims to study a non-Newtonian micropolar fluid flow over a bidirectional flexible surface for multiple exact solutions of momentum boundary layer and thermal transport phenomenon subject to wall mass flux, second-order slip and thermal jump conditions.

Design/methodology/approach

The coupled equations are transformed into ordinary differential equations using similarity variables. Analytical and numerical techniques are used to solve the coupled equations for single, dual or multiple solutions.

Findings

The results show that the stretching flow, shrinking flow, the wall drag, thermal profile and temperature gradient manifest large changes when treated for special effects of the standard parameters. The role of critical numbers is definitive in locating the domains for the existence of exact solutions. The nondimensional parameters, such as mass transfer parameter, bidirectional moving parameter, plate deformation strength parameter, velocity slips, material parameter, thermal jump and Prandtl number, are considered, and their physical effects are presented graphically. The presence of governing parameters exhibits special effects on the flow, microrotation and temperature distributions, and various exact solutions are obtained for the special parametric cases.

Originality/value

The originality and value of this work lie in its exploration of non-Newtonian micropolar fluid flow over a bidirectional flexible surface, highlighting the multiple exact solutions for momentum boundary layers and thermal transport under various physical conditions. The study provides insights into the effects of key parameters on flow and thermal behavior, contributing to the understanding of complex fluid dynamics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 March 2024

U.S. Mahabaleshwar, Mahesh Rudraiah, Huang Huang and Bengt Ake Sunden

The purpose of this study is to analyze the impact of inclined magnetohydrodynamics (MHD) and thermal radiation on the flow of a ternary micropolar nanofluid on a sheet that is…

Abstract

Purpose

The purpose of this study is to analyze the impact of inclined magnetohydrodynamics (MHD) and thermal radiation on the flow of a ternary micropolar nanofluid on a sheet that is expanding and contracting while applying mass transpiration and velocity slip conditions to the flow. The nanofluid, which is composed of Au, Ag and Cu nanoparticles dispersed in water as the base fluid, possesses critical properties for increasing the heat transfer rate and is frequently used in manufacturing and industrial establishments.

Design/methodology/approach

The set of governing nonlinear partial differential equations is transformed into a set of nonlinear ordinary differential equations. The outcome of this differential equation is solved and obtained the closed-form solution and energy equation in the form of hypergeometric functions.

Findings

The velocity, micro-rotation and temperature field are investigated versus a parametric variation. The physical domains of mass suction or injection and micropolar characteristics play an important role in specifying the presence, singleness and multiplanes of exact solutions. In addition, many nondimensional characteristics of the profiles of temperature, angular velocity and velocity profiles are graphically shown with substantial consequences. Furthermore, adding nanoparticles increases the heat transfer rate of the fluid used in manufacturing and industrial establishments. The current findings may be used for better oil recovery procedures, smart materials such as magnetorheological fluids, targeted medicine administration and increased heat transmission. Concerning environmental cleanup, nanomaterial fabrication and biomedical devices, demonstrate their potential influence in a variety of disciplines.

Originality/value

The originality of this paper is to analyze the impact of inclined MHD at an angle with the ternary nanofluid on a micropolar fluid over an expanding and contracting sheet with thermal radiation effect.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 2024

Mahmoud Taban and Alireza Basohbat Novinzadeh

One of the challenges encountered in the design of guided projectiles is their prohibitive cost. To diminish it, an appropriate avenue many researchers have explored is the use of…

Abstract

Purpose

One of the challenges encountered in the design of guided projectiles is their prohibitive cost. To diminish it, an appropriate avenue many researchers have explored is the use of the non-actuator method for guiding the projectile to the target. In this method, biologically inspired by the flying concept of the single-winged seed, for instance, that of maple and ash trees, the projectile undergoes a helical motion to scan the region and meet the target in the descent phase. Indeed, the projectile is a decelerator device based on the autorotation flight while it attempts to resemble the seed’s motion using two wings of different spans. There exists a wealth of studies on the stability of the decelerators (e.g. the mono-wing, samara and pararotor), but all of them have assumed the body (exclusive of the wing) to be symmetric and paid no particular attention to the scanning quality of the region. In practice, however, the non-actuator-guided projectiles are asymmetric owing to the presence of detection sensors. This paper aims to present an analytical solution for stability analysis of asymmetric decelerators and apprise the effects of design parameters to improve the scanning quality.

Design/methodology/approach

The approach of this study is to develop a theoretical model consisting of Euler equations and apply a set of non-dimensionalized equations to reduce the number of involved parameters. The obtained governing equations are readily applicable to other decelerator devices, such as the mono-wing, samara and pararotor.

Findings

The results show that the stability of the body can be preserved under certain conditions. Moreover, pertinent conclusions are outlined on the sensitivity of flight behavior to the variation of design parameters.

Originality/value

The analytical solution and sensitivity analysis presented here can efficiently reduce the design cost of the asymmetric decelerator.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Book part
Publication date: 14 March 2024

Luis Matosas-López

The versatility of customer relationship management (CRM) systems has kept these technologies popular over the years. These solutions have been integrated into organizations of…

Abstract

The versatility of customer relationship management (CRM) systems has kept these technologies popular over the years. These solutions have been integrated into organizations of all sizes, from large corporations to small- and medium-sized enterprises. Similarly, CRM systems have also found applications in all types of industries and business sectors. All this has been the driving force behind the proliferation of CRM solutions around the world. In this chapter, the author not only reflects on the impact and democratization of CRM systems on business management and marketing strategies but also explores how these technologies can determine the company's income. In particular, the author presents an experiment that analyzes the extent to which the volume of annual investment in CRM solutions can be used to predict annual net income in a sample of companies. Using time series analysis and applying the autoregressive integrated moving average modeling technique, the researcher examines a sample of 10 companies from different industries, and countries, over a 20-year period. The results show the efficiency of the predictive models developed in nine of the 10 companies analyzed. The findings of this study allow us to conclude that there seems to be an association between the investments made in CRM solutions and the income of the companies that invest in these technologies.

Details

The Impact of Digitalization on Current Marketing Strategies
Type: Book
ISBN: 978-1-83753-686-3

Keywords

Article
Publication date: 21 January 2022

Mustafa S. Al-Khazraji, M. J. Jweeg and S. H. Bakhy

The purpose of this paper is to investigate the free vibration response of a laminated honeycomb sandwich panels (LHSP) for aerospace applications. Higher order shear deformation…

Abstract

Purpose

The purpose of this paper is to investigate the free vibration response of a laminated honeycomb sandwich panels (LHSP) for aerospace applications. Higher order shear deformation theory (HSDT) was simplified for the dynamic analysis of LHSP. Furthermore, the effects of honeycomb parameters on the value of natural frequency (NF) of vibration were explored.

Design/methodology/approach

This paper applies HSDT to the analysis of composite LHSP to derive four vibration differential equations of motion and solve it to find the NF of vibration. Two analytical models (Nayak and Meunier models) were selected from literature for comparison of the NF of vibration. In addition, a numerical model was built by using ABAQUS and the results were compared. Furthermore, parametric studies were conducted to explore the effect of honeycomb parameters on the value of the NF of vibration.

Findings

The present model is successful in simplifying HSDT for the analysis of LHSP. The first five natural frequencies of vibration were calculated analytically and numerically. In the parametric study, increasing core height or young’s modulus or changing laminate layup will increase the value of NF of vibration. Furthermore, increasing plate constraint (using clamped edge boundary condition) will increase the value of NF of vibrations.

Research limitations/implications

The current analysis is suitable for all-composite symmetric LHSP. However, for isotropic or non-symmetric materials, minor modifications might be adopted.

Originality/value

The application of simplified HSDT to the analysis of LHSP is one of the important values of this research. The other is the successful and complete dynamic analysis of all-composite LHSP.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 2 February 2022

Ali Mohammed Ali, Manar Hamid Jasim and Bashar Dheyaa Hussein Al-Kasob

The purpose of this paper is to present an applied method to design the low-speed contact between a mass and surface of a beam using an analytical solution based on the…

Abstract

Purpose

The purpose of this paper is to present an applied method to design the low-speed contact between a mass and surface of a beam using an analytical solution based on the first-order shear deformation beam theory. Also, a simulation of impact process is carried out by ABAQUS finite element (FE) code.

Design/methodology/approach

In theoretical formulation, first strains and stresses are obtained, then kinetic and potential energies are written, and using a combination of Ritz and Lagrange methods, a set of system of motion equations in the form of mass, stiffness and force matrices is obtained. Finally, the motion equations are solved using Runge–Kutta fourth order method.

Findings

The von Mises stress contours at the impact point and contact force from the ABAQUS simulation are illustrated and it is revealed that the theoretical solution is in good agreement with the FE code. The effect of changes in projectile speed, projectile diameter and projectile mass on the results is carefully examined with particular attention to evaluate histories of the impact force and beam recess. One of the important results is that changes in projectile speed have a greater effect on the results than changes in projectile diameter, and also changes in projectile mass have the least effect.

Originality/value

This paper presents a combination of methods of energy, Ritz and Lagrange and also FE code to simulate the problem of sandwich beams under low velocity impact.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 12 January 2024

Imtiyaz Ahmad Bhat, Lakshmi Narayan Mishra, Vishnu Narayan Mishra, Cemil Tunç and Osman Tunç

This study aims to discuss the numerical solutions of weakly singular Volterra and Fredholm integral equations, which are used to model the problems like heat conduction in…

Abstract

Purpose

This study aims to discuss the numerical solutions of weakly singular Volterra and Fredholm integral equations, which are used to model the problems like heat conduction in engineering and the electrostatic potential theory, using the modified Lagrange polynomial interpolation technique combined with the biconjugate gradient stabilized method (BiCGSTAB). The framework for the existence of the unique solutions of the integral equations is provided in the context of the Banach contraction principle and Bielecki norm.

Design/methodology/approach

The authors have applied the modified Lagrange polynomial method to approximate the numerical solutions of the second kind of weakly singular Volterra and Fredholm integral equations.

Findings

Approaching the interpolation of the unknown function using the aforementioned method generates an algebraic system of equations that is solved by an appropriate classical technique. Furthermore, some theorems concerning the convergence of the method and error estimation are proved. Some numerical examples are provided which attest to the application, effectiveness and reliability of the method. Compared to the Fredholm integral equations of weakly singular type, the current technique works better for the Volterra integral equations of weakly singular type. Furthermore, illustrative examples and comparisons are provided to show the approach’s validity and practicality, which demonstrates that the present method works well in contrast to the referenced method. The computations were performed by MATLAB software.

Research limitations/implications

The convergence of these methods is dependent on the smoothness of the solution, it is challenging to find the solution and approximate it computationally in various applications modelled by integral equations of non-smooth kernels. Traditional analytical techniques, such as projection methods, do not work well in these cases since the produced linear system is unconditioned and hard to address. Also, proving the convergence and estimating error might be difficult. They are frequently also expensive to implement.

Practical implications

There is a great need for fast, user-friendly numerical techniques for these types of equations. In addition, polynomials are the most frequently used mathematical tools because of their ease of expression, quick computation on modern computers and simple to define. As a result, they made substantial contributions for many years to the theories and analysis like approximation and numerical, respectively.

Social implications

This work presents a useful method for handling weakly singular integral equations without involving any process of change of variables to eliminate the singularity of the solution.

Originality/value

To the best of the authors’ knowledge, the authors claim the originality and effectiveness of their work, highlighting its successful application in addressing weakly singular Volterra and Fredholm integral equations for the first time. Importantly, the approach acknowledges and preserves the possible singularity of the solution, a novel aspect yet to be explored by researchers in the field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 May 2022

Stavros K. Kourkoulis, Ermioni D. Pasiou, Christos F. Markides, Andronikos Loukidis, Ilias Stavrakas and Dimos Triantis

The determination of mode-I fracture toughness of brittle structural materials by means of the notched Brazilian disc configuration is studied. Advantage is taken of a recently…

Abstract

Purpose

The determination of mode-I fracture toughness of brittle structural materials by means of the notched Brazilian disc configuration is studied. Advantage is taken of a recently introduced analytical solution and, also, of data provided by an experimental protocol with notched marble specimens under diametral compression using the loading device suggested by International Society for Rock Mechanics (ISRM) and also the three-dimensional digital image correlation (3D-DIC) technique.

Design/methodology/approach

The analytical solution highlighted the role of geometrical factors, like, for example, the width of the notch, which are usually disregarded. The data of the experimental protocol were comparatively considered with those concerning the response of the specific material under uniaxial tensile load.

Findings

This combined study provided interesting data concerning some open issues, as it is the exact crack initiation point and the level of the critical load causing crack initiation. It was definitely indicated that the crack initiation point is not a priori known (even for notched specimens) and, also, that the maximum recorded load does not correspond by default to the critical load responsible for the onset of catastrophic macroscopic fracture.

Originality/value

It was suggested that the load considered critical one for the determination of mode-I fracture toughness KIC is erroneous. At a load equal to about 70% of the maximum one, a process zone is formed (zone of non-reversible phenomena) around the notch's crown, designating termination of the validity of any linear elastic solution used to determine the normalized stress intensity factors (SIFs). Moreover, at a load level equal to about 95% of the macroscopically observed fracture load, crack propagation has already begun. Therefore, the experimental procedure must be monitored with additional equipment, providing an overview of the displacement field developed during loading.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 1
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 19 April 2024

Bong-Gyu Jang and Hyeng Keun Koo

We present an approach for pricing American put options with a regime-switching volatility. Our method reveals that the option price can be expressed as the sum of two components…

Abstract

We present an approach for pricing American put options with a regime-switching volatility. Our method reveals that the option price can be expressed as the sum of two components: the price of a European put option and the premium associated with the early exercise privilege. Our analysis demonstrates that, under these conditions, the perpetual put option consistently commands a higher price during periods of high volatility compared to those of low volatility. Moreover, we establish that the optimal exercise boundary is lower in high-volatility regimes than in low-volatility regimes. Additionally, we develop an analytical framework to describe American puts with an Erlang-distributed random-time horizon, which allows us to propose a numerical technique for approximating the value of American puts with finite expiry. We also show that a combined approach involving randomization and Richardson extrapolation can be a robust numerical algorithm for estimating American put prices with finite expiry.

Details

Journal of Derivatives and Quantitative Studies: 선물연구, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1229-988X

Keywords

Article
Publication date: 15 September 2022

Natiq Yaseen Taha Al-Menahlawi, Mohammad Reza Khoshravan Azar, Tajbakhsh Navid Chakherlou and Hussein Al-Bugharbee

The purpose of this study is a numerical simulation and an analytical analysis about the low-velocity impact on a functionally graded porous plate with porosity distribution in…

Abstract

Purpose

The purpose of this study is a numerical simulation and an analytical analysis about the low-velocity impact on a functionally graded porous plate with porosity distribution in the thickness direction. In this article, polymethyl methacrylate is used for matrix, and single-walled carbon nanotube (CNTs) (10,10) with consideration agglomeration sizes and lumping of CNT inside the agglomerations is applied for reinforcement.

Design/methodology/approach

In analytical formulation, the non-linear Hertz contact law is applied for interaction between projectile and plate surface. High-order shear deformation plate theory is developed, and energy of the system for impactor and plate is written. The governing equations are derived using Ritz method and Lagrange equations and are solved using the fourth-order Runge–Kutta method. Also, ABAQUS finite element model of functionally graded porous plate with all edges simply supported and reinforced by CNT under low-velocity impact is simulated and is compared with those is achieved in the present analytical approach.

Findings

In parametric studies, the influence of porosity distribution patterns include uniform, non-uniform symmetric and non-uniform asymmetric on the histories of contact force and impactor displacement of simply supported plate reinforced by CNT are presented. Eventually, the effects of porosity coefficient, impactor initial velocity, impactor radius and CNTs lumping inside agglomerations for non-uniform symmetric distribution patterns are discussed in impact event in detail.

Originality/value

In this paper, the effect of combination of polymethyl methacrylate and CNTs with consideration agglomeration sizes and lumping of CNTs inside the agglomerations in the form of a functionally graded porous plate is studied in the problem of low-velocity impact analysis.

1 – 10 of over 2000