Search results

1 – 10 of 175
Article
Publication date: 12 February 2024

Azmeera Sudheer Kumar, Subodh Kumar, Prashant Kumar Choudhary, Ankit Gupta and Ashish Narayan

The purpose is to explore the free vibration behaviour of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The goal of this…

53

Abstract

Purpose

The purpose is to explore the free vibration behaviour of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The goal of this study is to gain a better knowledge of the dynamic response of nanoscale structures made of functionally graded materials and porous features. The Rayleigh-Ritz approach is used in this study to generate realistic mathematical models that take elastic foundation support into account. This research can contribute to the design and optimization of advanced nanomaterials with potential applications in engineering and technology by providing insights into the influence of material composition, porosity and foundation support on the vibrational properties of nanoplates.

Design/methodology/approach

A systematic methodology is proposed to evaluate the free vibration characteristics of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The study began by developing the mathematical model, adding material properties and establishing governing equations using the Rayleigh-Ritz approach. Numerical approaches to solve the problem are used, using finite element methods. The results are compared to current solutions or experimental data to validate the process. The results are also analysed, keeping the influence of factors on vibration characteristics in mind. The findings are summarized and avenues for future research are suggested, ensuring a robust investigation within the constraints.

Findings

The Rayleigh-Ritz technique is used to investigate the free vibration properties of elastic foundation-supported porous functionally graded nanoplates. The findings show that differences in material composition, porosity and foundation support have a significant impact on the vibrational behaviour of nanoplates. The Rayleigh-Ritz approach is good at modelling and predicting these properties. Furthermore, the study emphasizes the possibility of customizing nanoplate qualities to optimize certain vibrational responses, providing useful insights for engineering applications. These findings expand understanding of dynamic behaviours in nanoscale structures, making it easier to build innovative materials with specific features for a wide range of industrial applications.

Originality/value

The novel aspect of this research is the incorporation of elastic foundation support, porous structures and functionally graded materials into the setting of nanoplate free vibrations, utilizing the Rayleigh-Ritz technique. Few research have looked into this complex combo. By tackling complicated interactions, the research pushes boundaries, providing a unique insight into the dynamic behaviour of nanoscale objects. This novel approach allows for a better understanding of the interconnected effects of material composition, porosity and foundation support on free vibrations, paving the way for the development of tailored nanomaterials with specific vibrational properties for advanced engineering and technology applications.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 15 September 2022

Natiq Yaseen Taha Al-Menahlawi, Mohammad Reza Khoshravan Azar, Tajbakhsh Navid Chakherlou and Hussein Al-Bugharbee

The purpose of this study is a numerical simulation and an analytical analysis about the low-velocity impact on a functionally graded porous plate with porosity distribution in…

Abstract

Purpose

The purpose of this study is a numerical simulation and an analytical analysis about the low-velocity impact on a functionally graded porous plate with porosity distribution in the thickness direction. In this article, polymethyl methacrylate is used for matrix, and single-walled carbon nanotube (CNTs) (10,10) with consideration agglomeration sizes and lumping of CNT inside the agglomerations is applied for reinforcement.

Design/methodology/approach

In analytical formulation, the non-linear Hertz contact law is applied for interaction between projectile and plate surface. High-order shear deformation plate theory is developed, and energy of the system for impactor and plate is written. The governing equations are derived using Ritz method and Lagrange equations and are solved using the fourth-order Runge–Kutta method. Also, ABAQUS finite element model of functionally graded porous plate with all edges simply supported and reinforced by CNT under low-velocity impact is simulated and is compared with those is achieved in the present analytical approach.

Findings

In parametric studies, the influence of porosity distribution patterns include uniform, non-uniform symmetric and non-uniform asymmetric on the histories of contact force and impactor displacement of simply supported plate reinforced by CNT are presented. Eventually, the effects of porosity coefficient, impactor initial velocity, impactor radius and CNTs lumping inside agglomerations for non-uniform symmetric distribution patterns are discussed in impact event in detail.

Originality/value

In this paper, the effect of combination of polymethyl methacrylate and CNTs with consideration agglomeration sizes and lumping of CNTs inside the agglomerations in the form of a functionally graded porous plate is studied in the problem of low-velocity impact analysis.

Article
Publication date: 30 January 2024

Shaonan Shi, Feixiang Tang, Yongqiang Yu, Yuzheng Guo, Fang Dong and Sheng Liu

Hoping to uncover the physical principles of the vibration of the functionally graded material (FGM) microplate, by which the authors can make contributions to the design and…

Abstract

Purpose

Hoping to uncover the physical principles of the vibration of the functionally graded material (FGM) microplate, by which the authors can make contributions to the design and manufacturing process in factories like micro-electro-mechanical system (MEMS) and other industries.

Design/methodology/approach

The authors design a method by establishing a reasonable mathematical model of the physical microplate composed of a porous FGM.

Findings

The authors discover that the porosity, the distributions of porosity, the power law of the FGM and the length-to-thickness ratio all affect the natural frequency of the vibration of the microplate, but in different ways.

Originality/value

Originally proposed a model of the micro FGM plate considering the different distributions of the porosity and scale effect and analyzed the vibration frequency of it.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 20 October 2023

Omar Imad Shukri Windi and Ali Sadik Gafer Qanber

The purpose of this study is to extract the response of the simultaneous low-velocity impact of multiple impactors on a porous functionally graded (FG) aluminum plate.

Abstract

Purpose

The purpose of this study is to extract the response of the simultaneous low-velocity impact of multiple impactors on a porous functionally graded (FG) aluminum plate.

Design/methodology/approach

To design a porous FG structure, a series of functions are applied using the porosity coefficient, and mechanical properties including Young’s modulus, shear modulus and the density of the porous structure are presented as a function of the axis placed in the direction of the plate thickness. The first-order shear deformation theory of the plate is used. To simulate the contact process between each impactor and the plate, a nonlinear Hertz contact force is considered for that impactor independently.

Findings

ABAQUS finite element software is used for the verification process of the theorical equations. The effects of porous function type, radius and initial velocity of impactor are investigated for the simultaneous impact of five impactors on porous FG aluminum plate with a simply supported boundary condition. Histories of contact force and displacement of the impactor placed in the center of the beam are analyzed in detail with the changes of the mentioned parameters.

Originality/value

Due to the advantages of porous aluminum plate such as high energy absorption and low weight, such structures may be subjected to the simultaneous impact of multiple impactors, which is studied in this research.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 April 2023

Mehdi Ranjbar-Roeintan

The purpose of this article is to investigate the porosity-dependent impact study of a plate with Winkler–Pasternak elastic foundations reinforced with agglomerated carbon…

64

Abstract

Purpose

The purpose of this article is to investigate the porosity-dependent impact study of a plate with Winkler–Pasternak elastic foundations reinforced with agglomerated carbon nanotubes (CNTs).

Design/methodology/approach

Based on the first-order shear deformation plate theory, the strain energy related to elastic foundations is added to system strain energy. Using separation of variables and Lagrangian generalized equations, the nonlinear and time-dependent motion equations are extracted.

Findings

Verification examples are fulfilled to prove the precision and effectiveness of the presented model. The impact outputs illustrate the effects of various distribution of CNTs porosity functions along the plate thickness direction, Winkler–Pasternak elastic foundations and different boundary conditions on the Hertz contact law, the plate center displacement, impactor displacement and impactor velocity.

Originality/value

This paper investigates the effect of Winkler–Pasternak elastic foundations on the functionally graded porous plate reinforced with agglomerated CNTs under impact loading.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 27 April 2023

Mustafa Taşkin and Özgür Demir

The purpose of this paper is to parametrically investigate the vibration and damping characteristics of a functionally graded (FG) inhomogeneous and porous curved sandwich beam…

Abstract

Purpose

The purpose of this paper is to parametrically investigate the vibration and damping characteristics of a functionally graded (FG) inhomogeneous and porous curved sandwich beam with a frequency-dependent viscoelastic core.

Design/methodology/approach

The FG material properties in this study are assumed to vary through the beam thickness by power law distribution. Additionally, FG layers have porosities, which are analyzed individually in terms of even and uneven distributions. First, the equations of motion for the free vibration of the FG curved sandwich beam were derived by Hamilton's principle. Then, the generalized differential quadrature method (GDQM) was used to solve the resulting equations in the frequency domain. Validation of the proposed FG curved beam model and the reliability of the GDQ solution was provided via comparison with the results that already exist in the literature.

Findings

A series of studies are carried out to understand the effects on the natural frequencies and modal loss factors of system parameters, i.e. beam thickness, porosity distribution, power law exponent and curvature on the vibration characteristics of an FG curved sandwich beam with a ten-parameter fractional derivative viscoelastic core material model.

Originality/value

This paper focuses on the vibration and damping characteristics of FG inhomogeneous and porous curved sandwich beam with frequency dependent viscoelastic core by GDQM – for the first time, to the best of the authors' knowledge. Moreover, it serves as a reference for future studies, especially as it shows that the effect of porosity distribution on the modal loss factor needs further investigation. GDQM can be useful in dynamic analysis of sandwich structures used in aerospace, automobile, marine and civil engineering applications.

Details

Engineering Computations, vol. 40 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 July 2021

Anand Mandi, Santimoy Kundu and Prakash Chandra Pal

The present discussed problem deals with the torsional surface wave scattering in an initially stressed inhomogeneous medium. The assumed model consists of tri-mediums resting…

Abstract

Design/methodology/approach

The present discussed problem deals with the torsional surface wave scattering in an initially stressed inhomogeneous medium. The assumed model consists of tri-mediums resting over a viscoelastic semi-infinite medium and the considered tri-mediums are transversely isotropic, porous, and heterogeneous respectively under the impression of initial stress.

Design/methodology/approach

Heterogeneities are associated with density and rigidity in the intermediate layer and considered heterogeneities are of the trigonometric form. Displacement components are derived for mediums by applying separable variables.

Findings

Frequency equation is deduced by using suitable boundary conditions, defined at the free surface of the uppermost medium, and on the interfaces between mediums. The derived equation is of the complex form, real and imaginary parts direct the phase/damped velocities respectively. Additional results are considered in particular cases. Numerical examples are adopted for computing frequency equation and drawn consequences are demonstrated graphically to analyze the significant impact of various parameters on the phase velocity as well as on damped velocity of the surface wave sketched against the wavenumber.

Originality/Value

This presented research work provides a different view over the analysis of torsional surface waves than the earlier investigations. Previously studied problems on the wave generation were conducted in different models under the various affecting parameters. Study on torsional wave generation in the present model is not carried out till now. This study may find its virtue in the theoretical aspect as well as in the possible practical implications. The outcomes are relevant to geology and allied areas; moreover, the concern applications may be implicated in geological exploration, civil engineering, and prediction of Earthquake etc.

Details

Engineering Computations, vol. 38 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 June 2021

Royal Madan and Shubhankar Bhowmick

The purpose of this study is to investigate Thermo-mechanical limit elastic speed analysis of functionally graded (FG) rotating disks with the temperature-dependent material…

Abstract

Purpose

The purpose of this study is to investigate Thermo-mechanical limit elastic speed analysis of functionally graded (FG) rotating disks with the temperature-dependent material properties. Three different material models i.e. power law, sigmoid law and exponential law, along with varying disk profiles, namely, uniform thickness, tapered and exponential disk was considered.

Design/methodology/approach

The methodology adopted was variational principle wherein the solution was obtained by Galerkin’s error minimization principle. The Young’s modulus, coefficient of thermal expansion and yield stress variation were considered temperature-dependent.

Findings

The study shows a substantial increase in limit speed as disk profiles change from uniform thickness to exponentially varying thickness. At any radius in a disk, the difference in von Mises stress and yield strength shows the remaining stress-bearing capacity of material at that location.

Practical implications

Rotating disks are irreplaceable components in machinery and are used widely from power transmission assemblies (for example, gas turbine disks in an aircraft) to energy storage devices. During operations, these structures are mainly subjected to a combination of mechanical and thermal loadings.

Originality/value

The findings of the present study illustrate the best material models and their grading index, desired for the fabrication of uniform, as well as varying FG disks. Finite element analysis has been performed to validate the present study and good agreement between both the methods is seen.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 January 2023

Royal Madan, Shubhankar Bhowmick, Lazreg Hadji and Ali Alnujaie

In this work, the effect of porosity volume fraction, porosity types, material grading index, variable disk profiles and aspect ratio on disk performance was studied by performing…

Abstract

Purpose

In this work, the effect of porosity volume fraction, porosity types, material grading index, variable disk profiles and aspect ratio on disk performance was studied by performing limit elastic speed analysis of functionally graded porous rotating disks (PFGM) under thermo-mechanical loading.

Design/methodology/approach

The composition change was varied by employing the power law function. The thermo-mechanical properties of PFGM such as Young's modulus and yield strength were estimated using modified rule of mixture, for density and coefficient of thermal expansion rule of mixture was used. The even and uneven distribution of porosity in a disk was taken as uniform, symmetrical, inner maximum and outer maximum. The problem was then solved with the help of the variational principle and Galerkin's error minimization theory.

Findings

The research reveals that the grading parameter, disk geometry and porosity distribution have a significant impact on the limit elastic speed in comparison to the aspect ratio.

Practical implications

The study determines a range of operable speeds for porous and non-porous disk profiles that the industry can utilize to estimate structural performance.

Originality/value

A finite element investigation was conducted to validate the findings of the present study. Limit elastic analysis of porous FG disks under thermo-mechanical loading has not been studied before.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 May 2023

Minh Thi Tran and Son Thai

The main objective of this study is to develop a numerical model based on Isogeometric Analysis to study the dynamic behavior of multi-directional functionally graded plates with…

Abstract

Purpose

The main objective of this study is to develop a numerical model based on Isogeometric Analysis to study the dynamic behavior of multi-directional functionally graded plates with variable thickness.

Design/methodology/approach

A numerical study was conducted on the dynamic behavior of multi-directional functionally graded plates. Rectangular and circular plates with variable thickness are taken into investigation. The third-order shear deformation plate theory of Reddy is used to describe the displacement field, while the equation of motion is developed based on the Hamilton's principle. Isogeometric Analysis approach is employed as a discretization tool to develop the system equation, where NURBS basis functions are used. The famous Newmark method is used to solve time-dependent problems.

Findings

The results obtained from this study indicated that the thickness gradation has a more considerable effect than in-plane variation of materials in MFGM plates. Additionally, the influence of the damping factor is observed to affect the vibration amplitude of the plate. The results obtained from this study could be used for future investigations, where the viscous elasticity and other dynamic factors are considered.

Originality/value

Although there have been a number of studies in the literature devoted to analyzing the linear static bending and free vibration of FGM and MFGM plates with variable thickness, the study on dynamic response of FGM and MFGM plate is still limited. Therefore, this study is dedicated to the investigation of the dynamic behavior of multi-directional functionally graded plates.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 175