Search results

1 – 10 of over 8000
Article
Publication date: 27 August 2021

Fei Chen, Chao Wang, Ke Yan, Muhammad Azeem Ghouri, Yongsheng Zhu  and Jun Hong

This paper aims to analyze the temperature field and the heat transfer performance of the counter rotating dual rotor bearings (CRDRB) based on the air phase flow field at…

Abstract

Purpose

This paper aims to analyze the temperature field and the heat transfer performance of the counter rotating dual rotor bearings (CRDRB) based on the air phase flow field at different speeds to provide effective support for the lubrication and the thermal design of CRDRB.

Design/methodology/approach

In this study, taking H7006C angular contact ball bearing as an example, based on the flow visualization technique and the thermal analysis methods, the effects of outer ring speed on the air phase flow field, the temperature field and the heat transfer in bearing cavity were investigated.

Findings

Results indicated that there were more complex turbulent air vortices in CRDRB cavity. Turbulent cyclones in critical contact zone reduced the heat dissipation capacity of air. Compared with single rotor bearing with a static outer ring, the average heat transfer coefficient reduced by 11.78% and the average temperature raised by 3.06 K inside CRDRB cavity. Under the influence of outer ring rotation, the high temperature area in ball-inner raceway contact zone and pocket raised and reduced by 160.13% and 30.48%, respectively. The outer ring rotation had opposite effect on the heat dissipation of raceway contact zone and pocket.

Originality/value

The air phase flow field characteristics and the heat transfer performance of CRDRB were revealed and analyzed from the mechanism. An area quantification method was presented as an auxiliary mean of the thermal analysis to evaluate the heat transfer performance of bearing.

Details

Industrial Lubrication and Tribology, vol. 73 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 November 2018

Cong Liu, Baohong Tong, Guotao Zhang, Wei Wang, Kun Liu and Peimin Xu

This paper aims to investigate the influence of oil–air lubrication flow behavior on point contact sliding wear characteristics.

Abstract

Purpose

This paper aims to investigate the influence of oil–air lubrication flow behavior on point contact sliding wear characteristics.

Design/methodology/approach

Oil–air lubrication equations between point contact counterparts were established on the basis of volume of fluid model. The effects of oil supply and injection azimuth on oil-phase volume fraction and its pressure distribution were simulated with commercial software Fluent. Characteristics of point contact sliding wear were then tested with an MFT-3000 friction tester under oil–air lubrication condition. The influence of flow behavior on wear characteristic was investigated combined with numerical and experimental results. The wear mechanism was revealed using SEM, EDS and ferrography.

Findings

When air supply speed is constant, the oil-phase volume fraction increases with the increase in oil supply, which helps form continuous oil film and decrease the sliding wear evidently. The injection angle and distance considerably influence the oil–air flow behavior. When injecting at a certain distance and angle, the oil-phase volume fraction reaches its maximum, and the abrasion loss is minimal. Under the test conditions in this study, abrasive particles are mainly debris and a few spiral cuttings. The wear mechanism is abrasive wear.

Originality/value

The influence of the behavior of oil–air lubrication flow on the characteristic of point contact sliding wear is analyzed. This work provides guidance for the application of oil–air lubrication technology in point contact friction pairs.

Details

Industrial Lubrication and Tribology, vol. 71 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 July 2021

Włodzimierz Wróblewski, Krzysztof Bochon, Mirosław Majkut, Krzysztof Rusin and Emad Hasani Malekshah

The presence of air in the water flow over the hydrofoil is investigated. The examined hydrofoil is ClarkY 11.7% with an angle of attack of 8 deg. The flow simulations are…

Abstract

Purpose

The presence of air in the water flow over the hydrofoil is investigated. The examined hydrofoil is ClarkY 11.7% with an angle of attack of 8 deg. The flow simulations are performed with the assumption of different models. The Singhal cavitation model and the models which resolve the non-condensable gas including 2phases and 3phases are implemented in the numerical model. The calculations are performed with the uRANS model with assumption of the constant temperature of the mixture. The two-phase flow is simulated with a mixture model. The dynamics and structures of cavities are compared with literature data and experimental results.

Design/methodology/approach

The cavitation regime can be observed in some working conditions of turbomachines. The phase transition, which appears on the blades, is the source of high dynamic forces, noise and also can lead to the intensive erosion of the blade surfaces. The need to control this process and to prevent or reduce the undesirable effects can be fulfilled by the application of non-condensable gases to the liquid.

Findings

The results show that the Singhal cavitation model predicts the cavity structure and related characteristics differently with 2phases and 3phases models at low cavitation number where the cavitating flow is highly dynamic. On the other hand, the impact of dissolved air on the cloud structure and dynamic characteristic of cavitating flow is gently observable.

Originality/value

The originality of this paper is the evaluation of different numerical cavitation models for the prediction of dynamic characteristics of cavitating flow in the presence of air.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 July 2018

Sam Ban, William Pao and Mohammad Shakir Nasif

The purpose of this paper is to investigate oil-gas slug formation in horizontal straight pipe and its associated pressure gradient, slug liquid holdup and slug frequency.

3648

Abstract

Purpose

The purpose of this paper is to investigate oil-gas slug formation in horizontal straight pipe and its associated pressure gradient, slug liquid holdup and slug frequency.

Design/methodology/approach

The abrupt change in gas/liquid velocities, which causes transition of flow patterns, was analyzed using incompressible volume of fluid method to capture the dynamic gas-liquid interface. The validity of present model and its methodology was validated using Baker’s flow regime chart for 3.15 inches diameter horizontal pipe and with existing experimental data to ensure its correctness.

Findings

The present paper proposes simplified correlations for liquid holdup and slug frequency by comparison with numerous existing models. The paper also identified correlations that can be used in operational oil and gas industry and several outlier models that may not be applicable.

Research limitations/implications

The correlation may be limited to the range of material properties used in this paper.

Practical implications

Numerically derived liquid holdup and holdup frequency agreed reasonably with the experimentally derived correlations.

Social implications

The models could be used to design pipeline and piping systems for oil and gas production.

Originality/value

The paper simulated all the seven flow regimes with superior results compared to existing methodology. New correlations derived numerically are compared to published experimental correlations to understand the difference between models.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 February 2024

Zejian Huang, Yihua Cao and Yanyang Wang

The sandy environment is one of the typical environments in which helicopters operate. Air-sand two-phase flow in sandy environments may be an important factor affecting flight…

Abstract

Purpose

The sandy environment is one of the typical environments in which helicopters operate. Air-sand two-phase flow in sandy environments may be an important factor affecting flight safety. Taking a typical example, this paper aims to investigate the aerodynamic and rotor trim characteristics of the UH-60 helicopter in sandy environments.

Design/methodology/approach

A computational study is conducted to simulate the air-sand flow over airfoils based on the Euler–Lagrange framework. The simulation uses the S-A turbulence model and the two-way momentum coupling methodology. Additionally, the trim characteristics of the UH-60 rotor are calculated based on the isolated rotor trim algorithm.

Findings

The simulation results show that air-sand flow significantly affects the aerodynamic characteristics of the SC1095 airfoil and the SC1094R8 airfoil. The presence of sand particles leads to a decrease in lift and an increase in drag. The calculation results of the UH-60 helicopter rotor indicate that the thrust decreases and the torque increases in the sandy environment. To maintain a steady forward flight in sandy environments, it is necessary to increase the collective pitch and the longitudinal cyclic pitch.

Originality/value

In this paper, the aerodynamic characteristics of airfoils and the trim characteristics in the air-sand flow of the UH-60 helicopter are discussed, which might be a new view to analyse the impact of sandy environments on helicopter safety and manoeuvring.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 27 January 2022

Sivakumar Subramani, Sivaram Nantha Muthu and Narendra Laxman Gajbhiye

This paper aims to analyze spray characteristics of rapeseed oil as a cutting fluid in minimum quantity lubrication (MQL) through numerical simulation.

Abstract

Purpose

This paper aims to analyze spray characteristics of rapeseed oil as a cutting fluid in minimum quantity lubrication (MQL) through numerical simulation.

Design/methodology/approach

Computational fluid dynamics (CFD) is used in this numerical study. The Eulerian–Lagrangian approach was used in this simulation to project trajectories of the droplets as the cutting fluid is dispersed into a continuous phase, i.e. air. The spray characteristics of the multiphase fluids were obtained numerically using the discrete phase model (DPM).

Findings

The spray characteristics such as particle diameter and velocity were obtained for various pressure level, flow rate and nozzle diameter. The particle diameter decreased with increased pressure, whereas the velocity increased with increased pressure, flow rate and nozzle diameter. The changes in particle diameter are insignificant with respect to flow rate and nozzle diameter. DPM is an effective tool for machining processes to determine the behaviour of different cutting fluids under the MQL system.

Originality/value

In this study, the droplet and velocity distribution of vegetable oil, i.e. rapeseed oil, was investigated at the different air pressure, flow rate and nozzle diameter. This study will give insight for the manufacturer to select the better MQL system parameters to reduce the cost, time of machining processes and enhance the sustainability of the process.

Details

Industrial Lubrication and Tribology, vol. 74 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 October 2023

De-Xing Zheng and Dateng Zheng

For a lightweight and accurate description of bearing temperature, this paper aims to present an efficient semi-empirical model with oil–air two-phase flow and gray-box model.

91

Abstract

Purpose

For a lightweight and accurate description of bearing temperature, this paper aims to present an efficient semi-empirical model with oil–air two-phase flow and gray-box model.

Design/methodology/approach

First, the role of lubricant/coolant in bearing temperature was discussed separately, and the gray-box models on the heat convection inside a bearing cavity were also created. Next, the bearing node setting scheme was optimized. Consequently, a novel semi-empirical two-phase flow thermal grid for high-speed angular contact ball bearings was planned. With this model, the thermal network for the selected motored spindle was built, and the numerical solutions for bearing temperature rise were obtained and contrasted with the experimental values for validation. The polynomial interpolation on test data, meanwhile, was also performed to help us observe the temperature change trend. Finally, the simulations based on the current models of bearings were implemented, whose corresponding results were also compared with our research work.

Findings

The validation result indicates that the thermal prediction is more accurate and efficient when the developed semi-empirical oil–air two-phase flow model is employed to assess the thermal change of bearings. Clearly, we provide a more proper model for the thermal assessment of bearing and even spindle heating.

Originality/value

To the best of the authors’ knowledge, this paper introduced the oil–air separation and gray-box model for the first time to describe the heat exchange inside bearing cavities and accordingly presents an efficient semi-empirical oil–air two-phase flow model to evaluate the bearing temperature variation by using thermal network method.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-06-2023-0180/

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 March 2016

Chao Wang, Heyang Yu, Ni Zhan, Xubing Kang and Jingyu Zhang

The purpose of this paper is to develop a new vibration probe sensor for measurement of particle mass flow rate in gas–solid two phase flow.

Abstract

Purpose

The purpose of this paper is to develop a new vibration probe sensor for measurement of particle mass flow rate in gas–solid two phase flow.

Design/methodology/approach

A new vibration probe sensor based on polyvinylidene fluoride (PVDF) piezoelectric film is designed. The particle impact model according to Hertz contacting theory is presented. The average amplitude, standard deviation and spectral peak at the natural frequency of the probe (21.2 kHz) of the signals acquired through experiments are chosen as characteristic quantities for further analysis.

Findings

Through experimental study of relation between three characteristic quantities and the mass flow rate and air flow velocity, a good regularity is found in the average amplitude and the spectral peaks at natural frequency of the probe. According to the particle impact model, the structure of quantitative model is built and parameters of two models are calculated from experimental data. Additionally, tests are made to estimate mass flow rate. The average errors are 5.85 and 4.26 per cent, while the maximum errors are 10.81 and 8.65 per cent. The spectral peak at natural frequency of the probe is more applicable for mass flow rate measurement.

Practical implications

The sensor designed and the quantitative models established may be used in dilute phase pneumatic conveying lines of coal-fired power plants, cement manufacturing facilities and so on.

Originality/value

First, the new sensor is designed and the quantitative models are established. Second, the spectral peak at natural frequency of the probe is found that can be used for measurement of mass flow rate.

Details

Sensor Review, vol. 36 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 11 April 2016

Qunfeng Zeng, Jinhua Zhang, Jun Hong and Cheng Liu

The purpose of this paper is to design an oil-air lubrication system with low temperature rise, vibration and noise simplifies the spindle configuration. The oil-air lubrication…

564

Abstract

Purpose

The purpose of this paper is to design an oil-air lubrication system with low temperature rise, vibration and noise simplifies the spindle configuration. The oil-air lubrication unit is a key component for high-speed grinding machine tools. The development of oil-air lubrication unit suitable for high/ultrahigh rotational speed is a daunting task owing to the lubrication challenges.

Design/methodology/approach

This paper emphasizes three main issues: the analysis of oil-air two-phase flow for tradition oil-air lubrication unit with the simulation method; the design of new oil-air lubrication unit for the high/ultrahigh-speed grinding machine tools and the comparative experiment research of tradition and new oil-air lubrication unit. The optimum structure parameters that create the optimum flow pattern and operating conditions resulting in low temperature increase, vibration and noise of oil-air lubricated spindle can be achieved by the simulation method and experiments.

Findings

The simulation and experimental results show that new oil-air lubrication unit lubricating a high speed electric spindle has a better performance with a small temperature increase and vibration, which means that our proposed method is an effective design method for oil-air lubrication system.

Originality/value

A design method suitable for high-speed oil-air lubrication unit is proposed. New oil-air lubrication unit is expected to apply for high/ultrahigh rotational speed grinding machine tools.

Details

Industrial Lubrication and Tribology, vol. 68 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 8000