Search results

1 – 10 of over 1000
Article
Publication date: 8 January 2018

De-xing Zheng, Weifang Chen and Miaomiao Li

Thermal performances are key factors impacting the operation of angular contact ball bearings. Heat generation and transfer about angular contact ball bearings, however, have not…

Abstract

Purpose

Thermal performances are key factors impacting the operation of angular contact ball bearings. Heat generation and transfer about angular contact ball bearings, however, have not been addressed thoroughly. So far, most researchers only considered the convection effect between bearing housings and air, whereas the cooling/lubrication operation parameters and configuration effect were not taken into account when analyzing the thermal behaviors of bearings. This paper aims to analyze the structural constraints of high-speed spindle, structural features of bearing, heat conduction and convection to study the heat generation and transfer of high-speed angular contact ball bearings.

Design/methodology/approach

Based on the generalized Ohm’s law, the thermal grid model of angular contact ball bearing of high-speed spindle was first established. Next Gauss–Seidel method was used to solve the equations group by Matlab, and the nodes temperature was calculated. Finally, the bearing temperature rise was tested, and the comparative analysis was made with the simulation results.

Findings

The results indicate that the simulation results of bearing temperature rise for the proposed model are in better agreement with the test values. So, the thermal grid model established is verified.

Originality/value

This paper shows an improved model on forecasting temperature rise of high-speed angular contact ball bearings. In modeling, the cooling/lubrication operation parameters and structural constraints are integrated. As a result, the bearing temperature variation can be forecasted more accurately, which may be beneficial to improve bearing operating accuracy and bearing service life.

Details

Industrial Lubrication and Tribology, vol. 70 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 May 2023

Chang Zhang, Jiyin Tian and Dan Guo

Fix-position preloading, centrifugal force and higher temperatures cause the bearing units in angular contact ball bearings to expand, changing the contact load and affecting…

Abstract

Purpose

Fix-position preloading, centrifugal force and higher temperatures cause the bearing units in angular contact ball bearings to expand, changing the contact load and affecting bearing life. This study aims to examine the effect of thermal and centrifugal expansion on the fatigue life of fix-position preloaded angular contact ball bearings in high-speed operating conditions.

Design/methodology/approach

The contact loads on the inner and outer bearing rings were resolved according to the thermal and centrifugal expansion factors in the quasi-static position preloading model. The pressure and frictional stress distribution were used to calculate the subsurface stress in the contact area, while the Zaretsky model was used to determine the relative fatigue life of the inner and outer bearing rings.

Findings

Under fix-position bearing preloading, thermal and centrifugal expansion significantly affected the contact load and relative fatigue life. At the same axial preload, the inner ring contact load was higher than the outer ring contact load, with a maximum difference of 132.3%. The decrease in the inner ring relative life exceeded the outer ring contact load, with a maximum difference of 7.5%, compared to the absence of thermal and centrifugal expansion.

Originality/value

This study revealed the influence of thermal and centrifugal expansion on the fatigue life of angular contact ball bearings in high-speed service conditions.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2023-0065/

Details

Industrial Lubrication and Tribology, vol. 75 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 29 May 2020

Li Cui

Bearings in electric machines often work in high speed, light load and vibration load conditions. The purpose of this paper is to find a new fatigue damage accumulation rating…

4380

Abstract

Purpose

Bearings in electric machines often work in high speed, light load and vibration load conditions. The purpose of this paper is to find a new fatigue damage accumulation rating life model of ball bearings, which is expected for calculating fatigue life of ball bearings more accurately under vibration load, especially in high speed and light load conditions.

Design/methodology/approach

A new fatigue damage accumulation rating life model of ball bearings considering time-varying vibration load is proposed. Vibration equations of rotor-bearing system are constructed and solved by Runge–Kutta method. The modified rating life and modified reference rating life model under vibration load is also proposed. Contrast of the three fatigue life models and the influence of dynamic balance level, rotating speed, preload of ball bearings on bearing’s fatigue life are analyzed.

Findings

To calculate fatigue rating life of ball bearings more accurately under vibration load, especially in high speed and light load conditions, the fatigue damage accumulation rating life model should be considered. The optimum preload has an obvious influence on fatigue rating life.

Originality/value

This paper used analytical method and model that is helpful for design of steel ball bearing in high speed, light load and vibration load conditions.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2019-0180/

Details

Industrial Lubrication and Tribology, vol. 72 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 October 2023

De-Xing Zheng and Dateng Zheng

For a lightweight and accurate description of bearing temperature, this paper aims to present an efficient semi-empirical model with oil–air two-phase flow and gray-box model.

91

Abstract

Purpose

For a lightweight and accurate description of bearing temperature, this paper aims to present an efficient semi-empirical model with oil–air two-phase flow and gray-box model.

Design/methodology/approach

First, the role of lubricant/coolant in bearing temperature was discussed separately, and the gray-box models on the heat convection inside a bearing cavity were also created. Next, the bearing node setting scheme was optimized. Consequently, a novel semi-empirical two-phase flow thermal grid for high-speed angular contact ball bearings was planned. With this model, the thermal network for the selected motored spindle was built, and the numerical solutions for bearing temperature rise were obtained and contrasted with the experimental values for validation. The polynomial interpolation on test data, meanwhile, was also performed to help us observe the temperature change trend. Finally, the simulations based on the current models of bearings were implemented, whose corresponding results were also compared with our research work.

Findings

The validation result indicates that the thermal prediction is more accurate and efficient when the developed semi-empirical oil–air two-phase flow model is employed to assess the thermal change of bearings. Clearly, we provide a more proper model for the thermal assessment of bearing and even spindle heating.

Originality/value

To the best of the authors’ knowledge, this paper introduced the oil–air separation and gray-box model for the first time to describe the heat exchange inside bearing cavities and accordingly presents an efficient semi-empirical oil–air two-phase flow model to evaluate the bearing temperature variation by using thermal network method.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-06-2023-0180/

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 April 2016

Qunfeng Zeng, Jinhua Zhang, Jun Hong and Cheng Liu

The purpose of this paper is to design an oil-air lubrication system with low temperature rise, vibration and noise simplifies the spindle configuration. The oil-air lubrication…

564

Abstract

Purpose

The purpose of this paper is to design an oil-air lubrication system with low temperature rise, vibration and noise simplifies the spindle configuration. The oil-air lubrication unit is a key component for high-speed grinding machine tools. The development of oil-air lubrication unit suitable for high/ultrahigh rotational speed is a daunting task owing to the lubrication challenges.

Design/methodology/approach

This paper emphasizes three main issues: the analysis of oil-air two-phase flow for tradition oil-air lubrication unit with the simulation method; the design of new oil-air lubrication unit for the high/ultrahigh-speed grinding machine tools and the comparative experiment research of tradition and new oil-air lubrication unit. The optimum structure parameters that create the optimum flow pattern and operating conditions resulting in low temperature increase, vibration and noise of oil-air lubricated spindle can be achieved by the simulation method and experiments.

Findings

The simulation and experimental results show that new oil-air lubrication unit lubricating a high speed electric spindle has a better performance with a small temperature increase and vibration, which means that our proposed method is an effective design method for oil-air lubrication system.

Originality/value

A design method suitable for high-speed oil-air lubrication unit is proposed. New oil-air lubrication unit is expected to apply for high/ultrahigh rotational speed grinding machine tools.

Details

Industrial Lubrication and Tribology, vol. 68 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 April 2020

Yue Liu

The purpose of this paper is to clarify the relationship between fatigue life and kinematics of angular contact ball bearing. It proposes a new modeling method of spin to roll…

Abstract

Purpose

The purpose of this paper is to clarify the relationship between fatigue life and kinematics of angular contact ball bearing. It proposes a new modeling method of spin to roll ratio based on raceway friction, which is more accurate than the traditional raceway control theory.

Design/methodology/approach

The uniform model of spin to roll ratio based on raceway friction in a wide speed range is proposed using quasi-statics method, which considers centrifugal force, gyroscopic moment, friction force of raceway and other influencing factors. The accuracy is considerably improved compared with the static model without increasing too much computation.

Findings

A uniform model for spin to roll ratio of angular contact ball bearing based on raceway friction is established, and quite different relationships between fatigue life and speed under two operating conditions are found.

Research limitations/implications

The conclusion of this paper is based on the bearing basic fatigue life calculation theory provided by ISO/TS 16281; however, the accuracy of theory needs to be further verified.

Practical implications

This paper provides guidance for applying angular contact ball bearing, especially at a high speed.

Originality/value

This paper reveals the changing trend of fatigue life of angular contact ball bearing with the speed under different loads.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2020-0030

Details

Industrial Lubrication and Tribology, vol. 72 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 May 2019

Pingping He, Feng Gao, Yan Li, Wenwu Wu and Dongya Zhang

Under fix-position preload, the high rotation speed of the angular contact ball bearing exacerbates the frictional heat generation, which causes the increase of the bearing

Abstract

Purpose

Under fix-position preload, the high rotation speed of the angular contact ball bearing exacerbates the frictional heat generation, which causes the increase of the bearing temperature and the thermal expansion. The high rotation speed also leads to the centrifugal expansion of the bearing. Under the thermal and centrifugal effect, the structural parameters of the bearing change, affecting the mechanical properties of the bearing. The mechanical properties of the bearing determine its heat generation mechanism and thermal boundary conditions. The purpose of this paper is to study the effect of centrifugal and thermal effects on the thermo-mechanical characteristics of an angular contact ball bearing with fix-position preload.

Design/methodology/approach

Because of operating conditions, elastic deformation occurs between the ball and the raceway. Assuming that the surfaces of the ball and channel are absolutely smooth and the material is isotropic, quasi-static theory and thermal network method are used to establish the thermo-mechanical coupling model of the bearing, which is solved by Newton–Raphson iterative method.

Findings

The higher the rotation speed, the greater the influence of centrifugal and thermal effects on the bearing dynamic parameters, temperature rise and actual axial force. The calculation results show that the effects of thermal field on bearing dynamic parameters are more significant than the centrifugal effect. The temperature rise and actual axial force of the bearing are measured. Comparing the calculation and the experimental results, it is found that the temperature rise and the actual axial force of the bearing are closer to reality considering thermal and centrifugal effects.

Originality/value

In the past studies, the thermo-mechanical coupling characteristics research and experimental verification of angular contact ball bearing with fix-position preload are not concerned. Research findings of this paper provide theoretical guidance for spindle design.

Details

Industrial Lubrication and Tribology, vol. 71 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 October 2021

Miloš Stanković, Nenad Kolarević, Nikola Davidovic and Marko Miloš

The purpose of this paper is to improve the lubrication and remove as much as possible of the heat generated in the bearing assembly, embedded in the jet engine.

Abstract

Purpose

The purpose of this paper is to improve the lubrication and remove as much as possible of the heat generated in the bearing assembly, embedded in the jet engine.

Design/methodology/approach

To determine the necessary values of the air pressure and oil amount, an experimental approach is used. For that purpose, a custom made test rig is developed.

Findings

Less amount of oil makes better lubrication conditions, reflected in the smaller temperature of the bearings. Concerning the air pressure, too high and too low air pressure deteriorates the lubrication parameters. An optimum value should be determined experimentally. The influence of oil amount is remarkably bigger than the influence of air pressure.

Originality/value

This experimental investigation provides an easy and fast way to improve the high-speed bearings lubrication parameters.

Details

Industrial Lubrication and Tribology, vol. 74 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 August 2019

Zhen Li, Yufan Lu, Chi Zhang, Jinlong Dong, Xiaoli Zhao and Liqin Wang

The traction behaviours of lubricating oil significantly affect the stability and lubrication regime of aviation high-speed ball bearings. Rolling elements will slide at a low…

Abstract

Purpose

The traction behaviours of lubricating oil significantly affect the stability and lubrication regime of aviation high-speed ball bearings. Rolling elements will slide at a low traction force (TF). Therefore, traction behaviours need to be studied, and a fitting expression for traction curves to rapidly calculate the traction coefficient (TC) should be developed.

Design/methodology/approach

The traction behaviours of an aviation lubricating oil were studied in severe operating conditions with a self-designed two-disc testing rig. Based on the least squares method and the Levenberg–Marquardt theory, a rapid calculation expression was developed by fitting the obtained traction curves. The correction of this expression was experimentally verified by comparing the TCs under different operating conditions. This expression was also used to modify the commonly accepted quasi-dynamic model of rolling bearings.

Findings

An increase of the load led to an increase in the TC. In comparison, the temperature and entrainment speed showed inverse effects. The proposed expression exactly predicted the trend of the experimentally acquired traction curve. The calculation with the modified dynamic model showed that the action of the TF on a single rolling element varied and that the temperature increase of the outer raceway is higher than the inner raceway, which is caused by the TF and relative sliding speed between the elements and raceways.

Originality/value

The proposed fitting expression is able to simplify the TC calculation of synthetic aviation lubricating oil in practical engineering applications. This paper can provide an important reference for the traction behaviour of synthetic aviation lubricating oil under severe conditions and assist with its rapid calculation and practical application in engineering.

Details

Industrial Lubrication and Tribology, vol. 72 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 August 2023

Jian Sun, Xin Fang, Jinmei Yao, Zhe Zhang, Renyun Guan and Guangxiang Zhang

The study aims to the distribution rule of lubricating oil film of full ceramic ball bearing and improve its performance and life.

Abstract

Purpose

The study aims to the distribution rule of lubricating oil film of full ceramic ball bearing and improve its performance and life.

Design/methodology/approach

The paper established an analysis model based on the fluid–solid conjugate heat transfer theory for full ceramic ball bearings. The distribution of flow, temperature and pressure field of bearings under variable working conditions is analyzed. Meanwhile, the mathematical model of elastohydrodynamic lubrication (EHL) of full ceramic ball bearings is established. The numerical analysis is used to study the influence of variable working conditions on the lubricant film thickness and pressure distribution of bearings. The temperature rise test of full ceramic ball bearing under oil lubrication was carried out to verify the correctness of simulation results.

Findings

As the speed increased, the oil volume fraction in full ceramic ball bearing decreased and the surface pressure of rolling element increased. The temperature rise of full ceramic ball bearings increases with increasing speed and load. The lubricant film thickness of full ceramic ball bearing is positively correlated with speed and negatively correlated with load. The pressure of lubricating film is positively correlated with speed and load. The test shows that the higher inner ring speed and radial load, the higher the steady-state temperature rise of full ceramic ball bearing. The test results are in high agreement with simulation results.

Originality/value

Based on the fluid–solid conjugate heat transfer theory and combined with Reynolds equation, lubricating oil film thickness formula, viscosity temperature and viscosity pressure formula. The thermal analysis model and EHL mathematical model of ceramic ball bearings are established. The flow field, temperature field and pressure field distribution of the full ceramic ball bearing are determined. And the thickness and pressure distribution of lubricating oil film in the contact area of full ceramic ball bearing were determined.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0126/

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 1000