Search results

1 – 10 of over 12000
Article
Publication date: 27 February 2024

Karthikeyan Paramanandam, Venkatachalapathy S, Balamurugan Srinivasan and Nanda Kishore P V R

This study aims to minimize the pressure drop across wavy microchannels using secondary branches without compromising its capacity to transfer the heat. The impact of secondary…

Abstract

Purpose

This study aims to minimize the pressure drop across wavy microchannels using secondary branches without compromising its capacity to transfer the heat. The impact of secondary flows on the pressure drop and heat transfer capabilities at different Reynolds numbers are investigated numerically for different wavy microchannels. Finally, different channels are evaluated using performance evaluation criteria to determine their effectiveness.

Design/methodology/approach

To investigate the flow and heat transfer capabilities in wavy microchannels having secondary branches, a 3D conjugate heat transfer model based on finite volume method is used. In conventional wavy microchannel, secondary branches are introduced at crest and trough locations. For the numerical simulation, a single symmetrical channel is used to minimize computational time and resources and the flow within the channels remains single-phase and laminar.

Findings

The findings indicate that the suggested secondary channels notably improve heat transfer and decrease pressure drop within the channels. At lower flow rates, the secondary channels demonstrate superior performance in terms of heat transfer. However, the performance declines as the flow rate increased. With the same amplitude and wavelength, the introduction of secondary channels reduces the pressure drop compared with conventional wavy channels. Due to the presence of secondary channels, the flow splits from the main channel, and part of the core flow gets diverted into the secondary channel as the flow takes the path of minimum resistance. Due to this flow split, the core velocity is reduced. An increase in flow area helps in reducing pressure drop.

Practical implications

Many complex and intricate microchannels are proposed by the researchers to augment heat dissipation. There are challenges in the fabrication of microchannels, such as surface finish and achieving the required dimensions. However, due to the recent developments in metal additive manufacturing and microfabrication techniques, the complex shapes proposed in this paper are feasible to fabricate.

Originality/value

Wavy channels are widely used in heat transfer and micro-fluidics applications. The proposed wavy microchannels with secondary channels are different when compared to conventional wavy channels and can be used practically to solve thermal challenges. They help achieve a lower pressure drop in wavy microchannels without compromising heat transfer performance.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 July 2023

Kiran Kumar K, Kotresha Banjara and Kishan Naik

This study aims to present the numerical analysis of exergy transfer and irreversibility through the discrete filling of high-porosity aluminum metal foams inside the horizontal…

Abstract

Purpose

This study aims to present the numerical analysis of exergy transfer and irreversibility through the discrete filling of high-porosity aluminum metal foams inside the horizontal pipe.

Design/methodology/approach

In this study, the heater is embedded on the pipe’s circumference and is assigned with known heat input. To enhance the heat transfer, metal foam of 10 pores per inch with porosity 0.95 is filled into the pipe. In filling, two kinds of arrangements are made, in the first arrangement, the metal foam is filled adjacent to the inner wall of the pipe [Model (1)–(3)], and in the second arrangement, the foam is located at the center of the pipe [Models (4)–(6)]. So, six different models are examined in this research for a fluid velocity ranging from 0.7 to7 m/s under turbulent flow conditions. Darcy Extended Forchheimer is combined with local thermal non-equilibrium models for forecasting the flow and heat transfer features via metal foams.

Findings

The numerical methodology implemented in this study is confirmed by comparing the outcomes with the experimental outcomes accessible in the literature and found a fairly good agreement between them. The application of the second law of thermodynamics via metal foams is the novelty of current investigation. The evaluation of thermodynamic performance includes the parameters such as mean exergy-based Nusselt number (Nue), rate of irreversibility, irreversibility distribution ratio (IDR), merit function (MF) and non-dimensional exergy destruction (I*). In all the phases, Models (1)–(3) exhibit better performance than Models (4)–(6).

Practical implications

The present study helps to enhance the heat transfer performance with the introduction of metal foams and reveals the importance of available energy (exergy) in the system which helps in arriving at optimum design criteria for the thermal system.

Originality/value

The uniqueness of this study is to analyze the impact of discrete metal foam filling on exergy and irreversibility in a pipe under turbulent flow conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 May 2016

Bengt Ake Sunden, Zan Wu and Dan Huang

The purpose of this paper is to numerically investigate the heat transfer performance of aviation kerosene flowing in smooth and enhanced tubes with asymmetric fins at…

400

Abstract

Purpose

The purpose of this paper is to numerically investigate the heat transfer performance of aviation kerosene flowing in smooth and enhanced tubes with asymmetric fins at supercritical pressures and to reveal the effects of several key parameters, such as mass flow rate, heat flux, pressure and inlet temperature on the heat transfer.

Design/methodology/approach

A CFD approach is taken and the strong variations of the thermo-physical properties as the critical point is passed are taken into account. The RNG k-ε model is applied for simulating turbulent flow conditions.

Findings

The numerical results reveal that the heat transfer coefficient increases with increasing mass flow rate and inlet temperature. The effect of heat flux on heat transfer is more complicated, while the effect of pressure on heat transfer is insignificant. The considered asymmetric fins have a small effect on the fluid temperature, but the wall temperature is reduced significantly by the asymmetric fins compared to that of the corresponding smooth tube. As a result, the asymmetric finned tube leads to a significant heat transfer enhancement (an increase in the heat transfer coefficient about 23-41 percent). The enhancement might be caused by the re-development of velocity and temperature boundary layers in the enhanced tubes. With the asymmetric fins, the pressure loss in the enhanced tubes is slightly larger than that in the smooth tube. A thermal performance factor is applied for combined evaluation of heat transfer enhancement and pressure loss.

Research limitations/implications

The asymmetric fins also caused an increased pressure loss. A thermal performance factor ? was used for combined evaluation of heat transfer enhancement and pressure loss. Results show that the two enhanced tubes perform better than the smooth tube. The enhanced tube 2 gave better overall heat transfer performance than the enhanced tube 1. It is suggested that the geometric parameters of the asymmetric fins should be optimized to further improve the thermal performance and also various structures need to be investigated.

Practical implications

The asymmetric fins increased the pressure loss. The evaluation of heat transfer enhancement and pressure loss Results showed that the two enhanced tubes perform better than the smooth tube. It is suggested that the geometric parameters of the asymmetric fins should be optimized to further improve the thermal performance and also various structures need to be investigated to make the results more engineering useful.

Originality/value

The paper presents unique solutions for thermal performance of a fluid at near critical state in smooth and enhanced tubes. The findings are of relevance for design and thermal optimization particularly in aerospace applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 February 2020

Seralathan Sivamani, Murugan M., Hariram Venkatesan and Micha Premkumar T.

Nanofluid exhibits higher density, higher viscosity, higher thermal conductivity and reduced specific heat capacity along with improved heat transfer characteristics. It is…

Abstract

Purpose

Nanofluid exhibits higher density, higher viscosity, higher thermal conductivity and reduced specific heat capacity along with improved heat transfer characteristics. It is comparatively better than conventional fluids in terms of thermo-physical properties. This paper aims to investigate experimentally the overall performance of the shell and tube heat exchanger operated under two different configurations – without baffles (STHX_1) and with baffles (STHX_2) using 0.01 Vol.% and 0.02 Vol.% of CuO-W nanofluid.

Design/methodology/approach

Two different configurations, one without baffles (STHX_1) and other with single segmental baffles (STHX_2), are chosen with all other dimensional details of shell and tube remaining same. Water is used as base fluid. CuO nanoparticle is chosen, as its thermal conductivity is higher compared to other metal oxides. A comparative study on the thermal performance of these shell and tube heat exchangers are performed by considering different Vol.% concentrations of CuO-W nanofluid and the outcome are compared with the base fluid (i.e., water). The influence of varying the mass flow rate of the tube side fluid by keeping shell side fluid mass flow rate as constant and vice versa on the thermal performance of shell and tube heat exchanger are studied.

Findings

The modified shell and tube heat exchanger with baffles (STHX_2) give an improved performance. The heat transfer coefficient improved by about 11.28 and 7.54 per cent for 0.02 and 0.01 Vol.% of CuO-W nanofluid compared to water. Overall heat transfer coefficient for STHX_2 enhanced between 118.26% to 123.06% in comparison with base fluid for 0.02 Vol.% of CuO-W nanofluid whereas, it improved between 79.20% to 87.51% for 0.01 Vol.% of CuO-W nanofluid. Similarly, the actual heat transfer enhanced between 71.79% to 77.77% and between 48.71% to 55.55% for 0.02 and 0.01 Vol.% of CuO-W nanofluid, respectively. Moreover, mass flow rates of the working fluids significantly influence the performance of the shell and tube heat exchanger.

Originality/value

Two cases are considered here. first, by varying the shell side fluid mass flow rate and keeping the tube side fluid mass flow rate as constant. Later, tube side fluid mass flow rates are varied and shell side fluid mass flow rate is kept constant. It is found that in Case 2, for both 0.01 and 0.02 Vol.% of CuO-W nanofluid, highest performance is obtained for 150 kg/h of shell side and tube side fluid flows involving STHX_2. Finally, the modified shell and tube heat exchanger with baffle arrangement gives the best performance by using 0.02 Vol.% of CuO-W nanofluid.

Details

World Journal of Engineering, vol. 17 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 September 2012

H.A. Mohammed, G. Bhaskaran, N.H. Shuaib, H.I. Abu‐Mulaweh and R. Saidur

The purpose of this paper is to investigate numerically the thermal and hydrodynamics performance of circular microchannel heat exchanger (CMCHE) using various nanofluids.

Abstract

Purpose

The purpose of this paper is to investigate numerically the thermal and hydrodynamics performance of circular microchannel heat exchanger (CMCHE) using various nanofluids.

Design/methodology/approach

The three‐dimensional steady, laminar developing flow and conjugate heat transfer governing equations of a balanced MCHE are solved using finite volume method.

Findings

The results are shown in terms of temperature profile, heat transfer coefficient, pressure drop, wall shear stress, pumping power, effectiveness and performance index. The addition of nanoparticles increased the heat transfer rate of the base fluids. The temperature profiles of the fluids have revealed that higher average bulk temperatures were obtained by the nanofluids compared to water. The addition of nanoparticles also increased the pressure drop along the channels slightly. The increase in nanoparticle concentrations yielded better heat transfer rate while the increase in Reynolds number decreased the heat transfer rate.

Research limitations/implications

The tested nanofluids are Ag, Al2O3, CuO, SiO2, and TiO2. Reynolds number range varied from 100 to 800 and the nanoparticle concentration varied from 2 per cent to 10 per cent.

Practical implications

Parallel flow in CMCHEs is used in thermal engineering applications and the design and performance analysis of these CMCHE are of practical importance.

Originality/value

This paper provides the details of the thermal and hydrodynamics performance analysis of flow heat exchangers using nanofluids, which can be used for heat transfer augmentation in thermal design.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 September 2020

Lei Luo, Yifeng Zhang, Chenglong Wang, Songtao Wang and Bengt Ake Sunden

The pin fin is applied into a Lamilloy cooling structure which is broadly used in the leading edge region of the modern gas turbine vane. The purpose of this paper is to…

Abstract

Purpose

The pin fin is applied into a Lamilloy cooling structure which is broadly used in the leading edge region of the modern gas turbine vane. The purpose of this paper is to investigate effects of the layout, diameter and shape of pin fins on the flow structure and heat transfer characteristics in a newly improved Lamilloy structure at the leading edge region of a turbine vane.

Design/methodology/approach

A numerical method is applied to investigate effects of the layout, diameter and shape of pin fins on the flow structure and heat transfer characteristics in a newly improved Lamilloy structure at the leading edge of a turbine vane. The diverse locations of pin fins are Lp = 0.35, 0.5, 0.65. The diameter of the pin fins varies from 8 mm to 32 mm. Three different ratios of root to roof diameter for pin fins are also investigated, i.e. k = 0.5, 1, 2. The Reynolds number ranges from 10,000 and 50,000. Results of the flow structures, heat transfer on the target surface and pin fin surfaces, and friction factor are studied.

Findings

The heat transfer on the pin fin surface gradually decreases and then increases as the location of the pin fins increases. Increasing the diameter of the pin fins causes the heat transfer on the pin fin surface to gradually increase, while a lower value of the friction factor occurs. Besides, the heat transfer on the pin fin surface at a small root diameter increases remarkably, but a slight heat transfer penalty is found at the target surface. It is also found that both the Reynolds analogy performance and the thermal performance are increased compared to the baseline whose diameter and normalized location of pin fins are set as 16 and 0.5 mm, respectively.

Social implications

The models provide a basic theoretical study to deal with nonuniformity of the temperature field for the turbine vane leading edge. The investigation also provides a better understanding of the heat transfer and flow characteristics in the leading edge region of a modern turbine vane.

Originality/value

This is a novel method to adopt pin fins into a Lamilloy cooling structure with curvature. It presents that the heat transfer of the pin fin surface in a pin-fin Lamilloy cooling structure with curvature can be significantly increased by changing the parameters of the pin fins which may lead to various flow behavior. In addition, the shape of the pin fin also shows great influence on the heat transfer and flow characteristics. However, the heat transfer of the target surface shows a small sensitivity to different layouts, diameter and shape of pin fin.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 April 2021

Ali Akbar Abbasian Arani and Hamed Uosofvand

This paper aims to present a numerical investigation on laboratory-scale segmental baffles shell-and-tube heat exchanger (STHX) having various tube bundles and baffle…

Abstract

Purpose

This paper aims to present a numerical investigation on laboratory-scale segmental baffles shell-and-tube heat exchanger (STHX) having various tube bundles and baffle configuration.

Design/methodology/approach

To discover the higher performance the thermohydraulic behavior of shell-side fluid flow with circular, elliptical and twisted oval tube bundles with segmental and inclined segmental baffled is compared. Shell side turbulent flow and heat transfer are simulated by a finite volume discretization approach using SolidWorks Flow Simulation. To achieve greater configuration performance of this device, the following two approaches is considered: using the inclined baffle with 200 angles of inclination and applying the different tube bundle.

Findings

Different parameters as heat transfer rate, pressure drop (Δp), heat transfer coefficient (h) and heat transfer coefficient to pressure drop ratio (h/Δp) are presented and discussed. Besides, for considering the effect of pressure penalty and heat transfer improvement instantaneously, the efficiency evaluation coefficient (EEC) in the fluid flow and heat transfer based on the power required to provide the real heat transfer augmentation are used.

Originality/value

Obtained results displayed that, at the equal mass flow rate, the twisted oval tubes with segmental baffle decrease the pressure drop 53.6% and 35.64% rather than that the circular and elliptical tubes bundle, respectively. By comparing the (h/Δp) ratio, it can result that the STHX with twisted oval tubes bundle (both segmental and inclined baffle) has better performance than other kinds of the tube bundles. Present results showed that the values of the EEC for all provided models are higher than 1, except for elliptical tube bundles with segmental baffles. The STHX with twisted oval tube bundles and segmental baffle gives the highest EEC value equal to 1.16 in the range of investigated mass flow.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 March 2018

Jinsheng Wang, Lei Luo, Lei Wang, Bengt Ake Sunden and Songtao Wang

The fluid flow in a rotating channel is obviously different from that in a stationary channel due to the existence of Coriolis force, which, in turn, enhances the heat transfer on…

Abstract

Purpose

The fluid flow in a rotating channel is obviously different from that in a stationary channel due to the existence of Coriolis force, which, in turn, enhances the heat transfer on the trailing side and reduces the heat transfer on the leading side. The purpose of this paper is to study various rib configurations combined with channel orientation on heat transfer and frictional loss in a rotating channel.

Design/methodology/approach

In the present study, the k-ω SST model was used as the turbulence model. The fluid flow direction in the channel is radially outward. The angle between the rotation axis and leading side is 45°. The channel aspect ratio (W/H) is 2, the blockage ratio (e/Dn ) is 0.1 and the pitch ratio (P/e) is 10. The Reynolds number is fixed at 10,000 and the rotation number varies from 0 to 0.7. Angled ribs, reversed angled ribs, standard V-shaped ribs and outer-leaning V-shaped ribs, are examined.

Findings

It is found that the reversed angled rib configuration and the outer-leaning V-shaped rib configuration display better heat transfer performance than the V-shaped ribs in rotating condition, which is in contrast to stationary condition. At the leading side, the reversed angled rib and the outer-leaning V-shaped rib show better performance in recovering the heat transfer recession due to the negative effects of the Coriolis force.

Research limitations/implications

In the present study, the fluid is incompressible with constant thermophysical properties and the flow is steady.

Practical implications

The results of this study will be helpful in design of ribbed channels internal cooling for turbine blade.

Originality/value

The results imply that the rib configuration combined with channel orientation significantly impacts the heat transfer performance in a rotating channel. The reversed angled rib and the outer-leaning V-shaped rib show better heat transfer performance than standard V-shaped ribs, especially at high Rotating numbers, which is in contrast to stationary condition. The outer-leaning V-shaped rib has a relatively good heat transfer uniformity along the widthwise direction.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 August 2021

Rouhollah Moosavi, Mehdi Banihashemi and Cheng-Xian Lin

This paper aims to numerically investigate the thermal performance evaluation of a microchannel with different porous media insert configurations.

Abstract

Purpose

This paper aims to numerically investigate the thermal performance evaluation of a microchannel with different porous media insert configurations.

Design/methodology/approach

Heat transfer and pressure drop of fluid flow through a three-dimensional (3D) microchannel with different partially and filled porous media insert configurations are investigated numerically. The number of divisions and positions of porous material inside the microchannel for 12 different arrangements are considered. A control volume method is used for single-phase laminar flow with the Darcy–Forchheimer model used for the porous media. The geometry of the problem consists of a microchannel with a rectangular cross-section of 0.4 mm × 0.2 mm and length 20 mm, with a stainless steel porous material insert with a porosity coefficient of ε = 0.32 and a Darcy number of Da = 2.7 × 10−4.

Findings

Numerical results show that when the transverse arrangement is used, as the number of partitions increases, the thermal performance is improved and the heat transfer increases up to 300% compared to that of the plain microchannel. Comparing the obtained results from the microchannels with transverse and longitudinal configurations, at low Reynolds numbers, the transverse arrangement of porous blocks and at high Reynold numbers, the longitudinal arrangement present the best thermal performance which is virtually four times higher compared to the obtained Nu numbers from the plain microchannel. The results show that as the volume of porous material is constant in the cases with various transverse porous blocks, the pressure drop is not changed in these cases. Also, the highest thermal performance ratio is when the porous material is placed along the walls in a longitudinal direction.

Originality/value

To the best knowledge of the authors, in the previous research, the effect of the arrangement and location of the porous medium in the transverse and longitudinal direction in the microchannel and their effect in different states on the behavior of flow and heat transfer has not been numerically investigated. In this study, the porous media configuration and its placement in a 3D microchannel were numerically studied. The effect of porous material layout and configurations in different longitudinal and transverse directions on the pressure drop, heat transfer and thermal performance in the 3D microchannel is investigated numerically.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 March 2023

Amir Rezazad Bari, Mohammad Zabetian Targhi and Mohammad Mahdi Heyhat

This study aims to examine the effect of a combination of hybrid pin-fin patterns on a heat sink's performance using numerical techniques. Also, flow characteristics have been…

Abstract

Purpose

This study aims to examine the effect of a combination of hybrid pin-fin patterns on a heat sink's performance using numerical techniques. Also, flow characteristics have been studied, such as secondary flow formation and flow-wall interaction.

Design/methodology/approach

In this study, the effect of hybrid arrangements of elliptical and hexagonal pin-fins with different distribution percentages on flow characteristics and performance evaluation criteria in laminar flow was investigated. Ansys-Fluent software solves the governing equations using the finite volume method. Also, the accuracy of obtained results was compared with the experimental results of other similar papers.

Findings

The results of this study highlighted that hybrid arrangements show higher overall performance than single pin-fin patterns. Among the hybrid arrangements, case 3 has the highest values of performance evaluation criteria, that is, 1.84 in Re = 900. The results revealed that, with the instantaneous change in the pattern from elliptic to hexagonal, the secondary flow increases in the cross-sectional area of the channels, and the maximum velocity in the cross-section of the channel increases. The important advantages of case 3 are its highest overall performance and a lower chip surface temperature of up to about 2% than other hybrid patterns.

Originality/value

Prior research has shown that in the single pin-fin pattern, the cooling power at the end of the heat sink decreases with increasing fluid temperature. Also, a review of previous studies showed that existing papers had not investigated hybrid pin-fin patterns by considering the effect of changing distribution percentages on overall performance, which is the aim of this paper.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 12000