Search results

1 – 10 of 21
Article
Publication date: 8 January 2018

Saurabh Kumar Yadav, Arvind Kumar Rajput, Nathi Ram and Satish Chandra Sharma

This study aims to analyze the dynamic performance of aerostatic thrust bearing for different geometries of recess. Different geometries of recess of equal recess area, i.e…

Abstract

Purpose

This study aims to analyze the dynamic performance of aerostatic thrust bearing for different geometries of recess. Different geometries of recess of equal recess area, i.e. circular, elliptical, rectangular and annular, have been considered in analysis. The work also analyzes the influence of tilt angle on the performance of thrust bearing. To compute the unknown pressure field, the Reynolds equation governing the flow of compressible lubricant (air) has been solved using finite element formulation. Further, separate finite element formulations have been carried out to compute fluid film stiffness and damping coefficients directly. This method provides quick computation of stiffness and damping coefficients of aerostatic thrust bearing than the usual approach.

Design/methodology/approach

As the Reynolds equation governing the flow of compressible lubricant is nonlinear partial differential equation, the computation of the stiffness and damping coefficient follows an iterative procedure. It requires a lot of computational energy. Therefore, in the present work, a novel technique based on finite element formulation is suggested to compute air film stiffness and damping coefficient in aerostatic thrust bearing.

Findings

A novel technique based on finite element formulation is illustrated to simulate the performance of tilted pad aerostatic thrust bearing. On the basis of simulated results, following key conclusions may be drawn. The static and dynamic performance of a circular aerostatic tilted thrust pad bearing is significantly affected with a change in the value of tilt parameter and the shape of the recess.

Research limitations/implications

Implications are as follows: direct computation of air film damping coefficient is performed without perturbation method in finite element method (FEM); influence of tilt on aerostatic thrust bearing is studied; influence of recess shape on aerostatic thrust bearing is observed; and finite element formulation of aerostatic thrust bearing is performed.

Originality/value

The present work will be quite useful for bearing designer and academicians.

Details

Industrial Lubrication and Tribology, vol. 70 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 December 2022

Shang-Han Gao and Sheng-Long Nong

The purpose of this paper is to derive the one-dimensional governing equations to describe the pressure distribution, load capacity and stiffness of aerostatic circular thrust

95

Abstract

Purpose

The purpose of this paper is to derive the one-dimensional governing equations to describe the pressure distribution, load capacity and stiffness of aerostatic circular thrust bearing with a single air supply inlet.

Design/methodology/approach

The film flow field is divided into four regions: supply pressure region, pressure dropping region, pressure rising region and laminar flow region. The influences of bearing clearance and supply pressure on the pressure distribution, load capacity and stiffness of the bearing are presented.

Findings

With the large film clearance and large supply pressure, the oblique shock wave occurs near the entrance of gas film, which greatly increases the pressure drop region. Hence, it is not appropriate to consider the oblique shock as a normal shock.

Originality/value

This paper introduces the invariants at the entrance of gas film, employs the functional relationships between density and pressure, and provides the empirical formulas for the pressure dropping and rising regions. The pressure distribution curves are therefore illustrated through a considerably simplified computational process.

Details

Industrial Lubrication and Tribology, vol. 75 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 5 September 2018

Shang-Han Gao and Sheng-Long Nong

This paper aims to analyze the pressure distribution of rectangular aerostatic thrust bearing with a single air supply inlet using the complex potential theory and conformal…

Abstract

Purpose

This paper aims to analyze the pressure distribution of rectangular aerostatic thrust bearing with a single air supply inlet using the complex potential theory and conformal mapping.

Design/methodology/approach

The Möbius transform is used to map the interior of a rectangle onto the interior of a unit circle, from which the pressure distribution and load carrying capacity are obtained. The calculation results are verified by finite difference method.

Findings

The constructed Möbius formula is very effective for the performance characteristics researches for the rectangular thrust bearing with a single air supply inlet. In addition, it is also noted that to obtain the optimized load carrying capacity, the square thrust bearing can be adopted.

Originality/value

The Möbius transform is found suitable to describe the pressure distribution of the rectangular thrust bearing with a single air supply inlet.

Details

Industrial Lubrication and Tribology, vol. 70 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 November 2021

Chengjun Rong, Huaqi Lian and Yulong Li

Oil-free heat pumps that use the system refrigerant gases as lubricants are preferred for thermal management in future space applications. This study aims to numerically and…

Abstract

Purpose

Oil-free heat pumps that use the system refrigerant gases as lubricants are preferred for thermal management in future space applications. This study aims to numerically and experimentally investigate the static performance of externally pressurized thrust bearings lubricated with refrigerant gases.

Design/methodology/approach

The refrigerant gases R22, R410A and CO2 were chosen as the research objects, while N2 was used for comparison. Computational fluid dynamics was used to solve the full 3 D Navier–Stokes equations to determine the load capacity, static stiffness and static pressure distribution in the bearing film. The numerical results were experimentally verified.

Findings

The results showed that the refrigerant-gas-lubricated thrust bearings had a lower load capacity than the N2-lubricated bearings, but they presented a higher static stiffness when the bearing clearance was less than 9 µm. Compared with the N2-lubricated bearings, the optimal static stiffness of the R22- and CO2-lubricated bearings increased by more than 46% and more than 21%, respectively. The numerical and experimental results indicate that a small bearing clearance would be preferable when designing externally pressurized gas thrust bearings lubricated with the working medium of heat pump systems for space applications.

Originality/value

The findings of this study can serve as a basis for the further investigation of refrigerant gases as lubricants in heat pump systems, as well as for the future design of such gas bearings in heat pump systems for space applications.

Details

Industrial Lubrication and Tribology, vol. 73 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 June 2018

Dongju Chen, Lihua Dong, Ri Pan, Jinwei Fan and Qiang Cheng

The purpose of this study is to investigate the coupling effects of the velocity slip, rarefaction effect and effective viscosity of the gas film on the performance of the…

121

Abstract

Purpose

The purpose of this study is to investigate the coupling effects of the velocity slip, rarefaction effect and effective viscosity of the gas film on the performance of the aerostatic guideway in micro-scale and improve the analysis precision of the static performance of aerostatic guideway.

Design/methodology/approach

The corresponding model of the gas film flow with consideration of the velocity slip, rarefaction effect and effective viscosity of the gas film in micro-scale is proposed. By solving the corresponding model, the bearing capacity and the stiffness of the aerostatic guideway are obtained through the pressure distributions of the air cavity. Through comparing the bearing capacity and the stiffness in different situations, the couple effects of the three factors are analyzed. Finally, the experimental results about the stiffness are obtained and the contrast between the simulation stiffness and the tested stiffness is achieved.

Findings

Through comparing the coupling effects of the micro scale factors under different conditions on the performance of the aerostatic guideway, it was found that when comparing the effects of a single factor, the effect of the first-order slip is the largest. When two factors are randomly combined, velocity slip and viscosity of the gas film is the largest, but these coupling effects are less than the effect of considering three factors simultaneously.

Originality/value

It is essential to consider the first-order velocity slip, the flow factor Q and the effective viscosity when analyzing the static performance of the aerostatic guideway in micro-scale. This makes studying the performance of the aerostatic guideway in micro-scale feasible and improves the machine’s accuracy.

Details

Industrial Lubrication and Tribology, vol. 70 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 August 2020

Dongju Chen, Shuai Kong, Jingfang Liu and Jinwei Fan

The purpose of this paper is to propose the pressure fluctuation to further evaluate and predict the dynamic and static characteristics of the aerostatic slider and improve the…

Abstract

Purpose

The purpose of this paper is to propose the pressure fluctuation to further evaluate and predict the dynamic and static characteristics of the aerostatic slider and improve the calculation accuracy of the aerostatic slider.

Design/methodology/approach

First-order velocity slip is introduced into the traditional gas-film fluid equation, and the numerical analysis method is used to solve the static performance of the aerostatic slider. The finite element analysis method is used to solve its dynamic characteristics.

Findings

It can be concluded from the simulation and experimental results that the model considering the velocity slip in the gas film flow is more accurate. The errors between the modal detection results and the vibration detection results (0.8%–5.8%) under speed slip are smaller than the traditional cases (23.7%–210%), which also verifies the correctness of the above conclusions.

Originality/value

In this paper, the method of simulation and experiment is used to prove that the first-order velocity slip model is more suitable to predict the dynamic response of the aerostatic slider than the condition without slip.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-02-2020-0059/

Details

Industrial Lubrication and Tribology, vol. 73 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 April 2015

Zhiru Yang, Dongfeng Diao, Hongyan Fan, Xue Fan and Chao Wang

– The purpose of this paper is to study the load capacity of nanoparticles-laden gas film (NLGF) in thrust bearing.

Abstract

Purpose

The purpose of this paper is to study the load capacity of nanoparticles-laden gas film (NLGF) in thrust bearing.

Design/methodology/approach

SiO2 nanoparticles were added into gas to form an NLGF. The nanoparticles volume fraction in the film was controlled by a vibrator. The film thickness and the film pressure were measured by a micro cantilever displacement sensor and a membrane pressure sensor, respectively. The total load that makes the film thickness keeping constant was quantified, and then, the film load capacity was obtained.

Findings

The investigation shows that nanoparticles can enlarge the film load capacity remarkably; even a little amount of nanoparticles (0.01 per cent) could lead to a sharp rise. With the increase of nanoparticles volume fraction, load capacity increases. However, the increment of load capacity decreases gradually. In addition, the film pressure variation proves the enhancement effect of nanoparticles on the film load capacity.

Research limitations/implications

The paper is restricted to the findings based on NLGF, which is formed by dispersing SiO2 nanoparticles in gas film as an additive. The experimental results are applicable within the range of nanoparticles volume fraction of 0.01-0.33 per cent.

Originality/value

The fact that nanoparticles could enlarge the gas film load capacity is verified by experiment for the first time. This study reveals the corresponding relation between nanoparticles volume fraction and the film load capacity.

Details

Industrial Lubrication and Tribology, vol. 67 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 November 2023

Yinan Chen, Dehong Huo, Guorong Wang, Lin Zhong and Zheng Gong

This paper aims to combine the grooves with an annular air thrust bearing with multi-hole restrictors and discusses the influence of the groove parameters on the bearing

Abstract

Purpose

This paper aims to combine the grooves with an annular air thrust bearing with multi-hole restrictors and discusses the influence of the groove parameters on the bearing performance.

Design/methodology/approach

Four models of aerostatic bearings with grooves of different geometries are established. The pressure distribution, load-carrying capacity (LCC), stiffness and flow characteristics of the flow field in the bearing clearances are obtained by computational fluid dynamics simulation.

Findings

The numerical and simulation results show that air bearing with grooved restrictors can slow down the pressure drop at the air inlet and increase the LCC and stiffness of the bearing. The gas flow in the aerostatic bearing is also studied, and the air vortex in the recess is analyzed.

Originality/value

This research optimizes the structure of the annular air thrust bearing, analyzes the gas vortex in the recess, improves the LCC and stiffness of the bearing and provides a reference for the bearing in the selection of groove parameters.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2023-0006/

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 November 2017

Polina V. Khan, Dawit Zenebe Segu and Pyung Hwang

Aerostatic porous bearings are important for guide rails and spindles. It is well-known that flow restrictors made of porous materials offer major advantages over conventional…

Abstract

Purpose

Aerostatic porous bearings are important for guide rails and spindles. It is well-known that flow restrictors made of porous materials offer major advantages over conventional restrictors in such bearings, including design and manufacturing, load-carrying capacity, stiffness, damping and dynamic stability. Thus, this work numerically investigates the effect of the arc on a new combined annular-thrust aerostatic porous bearing.

Design/methodology/approach

The static characteristics of an annular-thrust aerostatic porous bearing were studied using a fast finite element scheme. The pressure distribution, radial load and thrust load were analyzed as functions of the arc, permeability and eccentricity.

Findings

The results reveal that the radial load achieves maximal values at an optimal arc value between 200 and 300, and the thrust load increases monotonically with increasing arc.

Originality/value

This work developed a new combined annular-thrust aerostatic porous bearing to investigate the effect of arc on the annular-thrust aerostatic porous bearings to increase the load-carrying capacity.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 January 2020

Yu Chen, Jun Feng, Y. Sun, Xu Peng, Qiao Dai and Chengtao Yu

The purpose of this study is to investigate the influence of groove shape on the hydrodynamic characteristics of a journal bearing.

Abstract

Purpose

The purpose of this study is to investigate the influence of groove shape on the hydrodynamic characteristics of a journal bearing.

Design/methodology/approach

The computational fluid dynamics model also takes into account the cavitation phenomena and thermal effect, which can illustrate the lubrication performance of a journal bearing.

Findings

The hydrodynamic simulations of the journal bearing with the different groove shapes are conducted under different operation conditions.

Originality/value

Based on the numerical analysis, the suggestions are presented for groove shape selection and can be used to the design of a journal bearing under the extreme operation condition.

Details

Engineering Computations, vol. 37 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 21