Search results

1 – 10 of over 29000
Article
Publication date: 20 December 2022

Shang-Han Gao and Sheng-Long Nong

The purpose of this paper is to derive the one-dimensional governing equations to describe the pressure distribution, load capacity and stiffness of aerostatic circular thrust…

91

Abstract

Purpose

The purpose of this paper is to derive the one-dimensional governing equations to describe the pressure distribution, load capacity and stiffness of aerostatic circular thrust bearing with a single air supply inlet.

Design/methodology/approach

The film flow field is divided into four regions: supply pressure region, pressure dropping region, pressure rising region and laminar flow region. The influences of bearing clearance and supply pressure on the pressure distribution, load capacity and stiffness of the bearing are presented.

Findings

With the large film clearance and large supply pressure, the oblique shock wave occurs near the entrance of gas film, which greatly increases the pressure drop region. Hence, it is not appropriate to consider the oblique shock as a normal shock.

Originality/value

This paper introduces the invariants at the entrance of gas film, employs the functional relationships between density and pressure, and provides the empirical formulas for the pressure dropping and rising regions. The pressure distribution curves are therefore illustrated through a considerably simplified computational process.

Details

Industrial Lubrication and Tribology, vol. 75 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 April 2023

Chinedu Chinakwe, Adekunle Adelaja, Michael Akinseloyin and Olabode Thomas Olakoyejo

Inclination angle has been reported to have an enhancing effect on the thermal-hydraulic characteristics and entropy of some thermal systems. Therefore, this paper aims to…

Abstract

Purpose

Inclination angle has been reported to have an enhancing effect on the thermal-hydraulic characteristics and entropy of some thermal systems. Therefore, this paper aims to numerically investigate the effects of inclination angle, volume concentration and Reynolds number on the thermal and hydraulic characteristics and entropy generation rates of water-based Al2O3 nanofluids through a smooth circular aluminum pipe in a turbulent flow.

Design/methodology/approach

A constant heat flux of 2,000 Watts is applied to the circular surface of the tube. Reynolds number is varied between 4,000 and 20,000 for different volume concentrations of alumina nanoparticles of 0.5%, 1.0% and 2.0% for tube inclination angles of ±90o, ±60o, ±45o, ±30o and 0o, respectively. The simulation is performed in an ANSYS Fluent environment using the realizable kinetic energy–epsilon turbulent model.

Findings

Results show that +45o tube orientation possesses the largest thermal deviations of 0.006% for 0.5% and 1.0% vol. concentrations for Reynolds numbers 4,000 and 12,000. −45o gives a maximum pressure deviation of −0.06% for the same condition. The heat transfer coefficient and pressure drop give maximum deviations of −0.35% and −0.39%, respectively, for 2.0% vol. concentration for Reynolds number of 20,000 and angle ±90o. A 95%–99.8% and 95%–98% increase in the heat transfer and total entropy generation rates, respectively, is observed for 2.0% volume concentration as tube orientation changes from the horizontal position upward or downward.

Originality/value

Research investigating the effect of inclination angle on thermal-hydraulic performance and entropy generation rates in-tube turbulent flow of nanofluid is very scarce in the literature.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 October 2019

Kanwar Pal Singh, Arvind Kumar and Deo Raj Kaushal

This paper aims to the transportation of high concentration slurry through pipelines that will require thorough understanding of physical and rheological properties of slurry, as…

Abstract

Purpose

This paper aims to the transportation of high concentration slurry through pipelines that will require thorough understanding of physical and rheological properties of slurry, as well as its hydraulic flow behavior. In spite of several contributions by the previous researchers, there is still a need to enrich the current understanding of hydraulic conveying through pipeline at various flow parameters. The pilot plant loop tests, particularly at high concentrations, are tedious, time-consuming and complex in nature. Therefore, in the current research the prediction methodology for slurry pipeline design based on rheological model of the slurry is used for calculation of pressure drop and other design parameters.

Design/methodology/approach

It has been established that slurry rheology plays important role in the prediction of pressure drop for laminar and turbulent flow of commercial slurries through pipeline. In the current research fly ash slurry at high concentration is chosen for rheological analysis. The effect of particle size and solid concentration is experimentally tested over the rheological behavior of slurry and based on the rheological data a correlation is developed for calculation of pressure drop in slurry pipeline.

Findings

The present study strongly supports the analytical approach of pressure drop prediction based on the rheological parameters obtained from the bench scale tests. The rheological properties are strongly influenced by particle size distribution (PSD), shear rate and solid mass concentration of the slurry samples. Pressure drop along the pipeline is highly influenced by flow velocity and solid concentration. The presence of coarser particles in the slurry samples also leads to high pressure drop along the pipeline. As the concentration of solid increase the shear stress and shear viscosity increase cause higher pressure drop.

Research limitations/implications

The transportation of slurry in the pipeline is very complex as there are lot of factors that affect the flow behavior of slurry in pipelines. From the vast study of literature it is found that flow behavior of slurry changes with the change in parameters such as solids concentration, flow velocity, PSD, chemical additives and so on. Therefore, the accurate prediction of hydraulic parameter is very difficult. Different slurry samples behave differently depending upon their physical and rheological characteristics. So it is required to study each slurry samples individually that is time-consuming and costly.

Practical implications

Nowadays in the world, long distance slurry pipelines are used for the transportation of highly concentration slurries. Many researchers have carried out an experiment in the design aspects of hydraulic transportation system. Rheological characteristics of slurry also play crucial role in determining important parameters of hydraulic conveying such as head loss in commercial slurry pipeline. The current research is useful for the prediction of pressure drop based on rheological behavior of fly ash slurry at various solid concentrations. The current research is helpful for finding the effect of solid concentration and flow velocity on the flow behavior of slurry.

Social implications

Slurry pipeline transportation has advantages over rail and road transportation because of low energy consumption, economical, less maintenance and eco-friendly nature. Presently majority of the thermal power plants in India and other parts of the world dispose of coal ash at low concentration (20 per cent by weight) to ash ponds using the slurry pipeline. Transporting solids in slurry pipelines at higher concentrations will require a thorough knowledge of pressure drop. In the current research a rheological model is proposed for prediction of pressure drop in the slurry pipeline, which is useful for optimization of flow parameters.

Originality/value

All the experimental work is done on fly ash slurry samples collect from the Jharli thermal power plant from Haryana State of India. Bench scale tests are performed in the water resource laboratory of IIT Delhi for physical and rheological analysis of slurry. It has been shown in the results that up to solid concentration of 50 per cent by mass all the samples behave as non-Newtonian and follows a Herschel–Bulkley model with shear thickening behavior. In the present research all the result outcomes are unique and original and does not copied from anywhere.

Details

World Journal of Engineering, vol. 16 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 July 2020

Shijo J.S. and Niranjana Behera

The purpose of this paper is to focus on predicting the pressure drop in fluidized dense phase pneumatic conveying of fine particles through pipelines by modelling the solids…

Abstract

Purpose

The purpose of this paper is to focus on predicting the pressure drop in fluidized dense phase pneumatic conveying of fine particles through pipelines by modelling the solids friction factor in terms of non-dimensional parameters using experimental data of definite pipeline configuration. Finally, the model is to be tested for a different pipeline configuration.

Design/methodology/approach

Solids friction factor has been expressed in terms of certain non-dimensional parameters such as density ratio, solids loading ratio and mean particle diameter to pipe diameter ratio, and a certain number of coefficients and exponents. Experimental data of five conveying materials (two types of fly ash, two types of alumina and one type of cement meal) for a pipeline configuration of diameter 53 mm and length 173 m and another conveying material EPS dust for two pipeline configurations (69-mm diameter, 168-m long; 105-mm diameter, 168-m long) have been used to calculate the unknown coefficients or exponents of the mathematical model for solids friction factor.

Findings

The developed model gives the best results in predicting the pressure drop for the pipelines that are less than 173-m long, but the model shows a large error for the pipelines more than 173-m long.

Research limitations/implications

Current research will be helpful for the researchers to model the process of pneumatic conveying through long distances.

Practical implications

The method will be helpful in conveying powder materials through long distances in cement or brick industry, alumina industry.

Social implications

Fly ash piles over at the nearby places of thermal power plants. Pneumatic conveying is the best method for transporting the fly ash from the location of power plants to the nearby brick industries or cement industries.

Originality/value

Solid friction factor has been presented in terms of four non-dimensional parameters and evaluated the accuracy in predicting the pressure drop for two different pipeline configurations.

Details

World Journal of Engineering, vol. 17 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 9 August 2021

Vishnudas Alias Vipul Luvu Chodankar, Aswatha and K.N. Seetharamu

The purpose of this paper is to attain higher effectiveness with an introduction of Joule–Thomson effect on a three-fluid heat exchanger with two communications. It also gives a…

Abstract

Purpose

The purpose of this paper is to attain higher effectiveness with an introduction of Joule–Thomson effect on a three-fluid heat exchanger with two communications. It also gives a range of parameter values that have to be maintained for achieving effectiveness above 0.85. Attaining effectiveness above 0.85 is very important for the heat exchanger to perform the liquefaction of hot fluid.

Design/methodology/approach

The analysis is conducted using Galerkin’s method, a finite element approach.

Findings

This investigation determines crucial values for the cryogenic heat exchanger to achieve effectiveness above 0.85. The important findings are as follows: effectiveness above 0.85 is attained if the heat exchanger size is within the range of 8–10; ratio of heat flow resistance between intermediate and hot stream to heat flow resistance between cold and hot stream should be maintained between 1 and 10; the intermediate fluid temperature should be maintained between 0 and 0.2; the ratio of thermal capacity of the hot fluid relative to a cold fluid should be maintained between 1.25 and 1.42; and the ratio of thermal capacity of the hot fluid relative to an intermediate fluid should be maintained between 2 and 2.5.

Research limitations/implications

The investigation has presented a finding for improving the effectiveness of the cryogenic heat exchanger. Higher the Joule–Thomson pressure drop effect, more is the drop in temperature of the fluid resulting in additional cooling or lowering of the fluid temperature. The practical implementation is also explained, i.e. to achieve practically the Joule–Thomson pressure drop in a cryogenic heat exchanger.

Originality/value

To the best of the authors’ knowledge, no investigations were carried out previously on Joule–Thomson investigation on a three-fluid heat exchanger with two communications, for different values of Joule–Thomson pressure drop.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 April 2021

Ali Akbar Abbasian Arani and Hamed Uosofvand

This paper aims to present a numerical investigation on laboratory-scale segmental baffles shell-and-tube heat exchanger (STHX) having various tube bundles and baffle…

Abstract

Purpose

This paper aims to present a numerical investigation on laboratory-scale segmental baffles shell-and-tube heat exchanger (STHX) having various tube bundles and baffle configuration.

Design/methodology/approach

To discover the higher performance the thermohydraulic behavior of shell-side fluid flow with circular, elliptical and twisted oval tube bundles with segmental and inclined segmental baffled is compared. Shell side turbulent flow and heat transfer are simulated by a finite volume discretization approach using SolidWorks Flow Simulation. To achieve greater configuration performance of this device, the following two approaches is considered: using the inclined baffle with 200 angles of inclination and applying the different tube bundle.

Findings

Different parameters as heat transfer rate, pressure dropp), heat transfer coefficient (h) and heat transfer coefficient to pressure drop ratio (h/Δp) are presented and discussed. Besides, for considering the effect of pressure penalty and heat transfer improvement instantaneously, the efficiency evaluation coefficient (EEC) in the fluid flow and heat transfer based on the power required to provide the real heat transfer augmentation are used.

Originality/value

Obtained results displayed that, at the equal mass flow rate, the twisted oval tubes with segmental baffle decrease the pressure drop 53.6% and 35.64% rather than that the circular and elliptical tubes bundle, respectively. By comparing the (h/Δp) ratio, it can result that the STHX with twisted oval tubes bundle (both segmental and inclined baffle) has better performance than other kinds of the tube bundles. Present results showed that the values of the EEC for all provided models are higher than 1, except for elliptical tube bundles with segmental baffles. The STHX with twisted oval tube bundles and segmental baffle gives the highest EEC value equal to 1.16 in the range of investigated mass flow.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 June 2019

Vahid Jaferian, Davood Toghraie, Farzad Pourfattah, Omid Ali Akbari and Pouyan Talebizadehsardari

The purpose of this study is three-dimensional flow and heat transfer investigation of water/Al2O3 nanofluid inside a microchannel with different cross-sections in two-phase mode.

Abstract

Purpose

The purpose of this study is three-dimensional flow and heat transfer investigation of water/Al2O3 nanofluid inside a microchannel with different cross-sections in two-phase mode.

Design/methodology/approach

The effect of microchannel walls geometry (trapezoidal, sinusoidal and stepped microchannels) on flow characteristics and also changing circular cross section to trapezoidal cross section in laminar flow at Reynolds numbers of 50, 100, 300 and 600 were investigated. In this study, two-phase water/Al2O3 nanofluid is simulated by the mixture model, and the effect of volume fraction of nanoparticles on performance evaluation criterion (PEC) is studied. The accuracy of obtained results was compared with the experimental and numerical results of other similar papers.

Findings

Results show that in flow at lower Reynolds numbers, sinusoidal walls create a pressure drop in pure water flow which improves heat transfer to obtain PEC < 1. However, in sinusoidal and stepped microchannel with higher Reynolds numbers, PEC > 1. Results showed that the stepped microchannel had higher pressure drop, better thermal performance and higher PEC than other microchannels.

Originality/value

Review of previous studies showed that existing papers have not compared and investigated nanofluid in a two-phase mode in inhomogeneous circular, stepped and sinusoidal cross and trapezoidal cross-sections by considering the effect of changing channel shape, which is the aim of the present paper.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 9 July 2010

Cathy A. Enz and Linda Canina

This chapter examines the pricing, demand (occupancy), and revenue per available room (RevPAR) dynamics of European hotels for the period 2006–2007. The importance of…

Abstract

This chapter examines the pricing, demand (occupancy), and revenue per available room (RevPAR) dynamics of European hotels for the period 2006–2007. The importance of understanding the pricing behavior of direct competitors is critical to effective strategy formulation and meaningful industry analysis. Nevertheless, existing demand studies miss a critical link to local market dynamics. This study offers an alternative approach to examining competitive set pricing behavior that yields insights into the inelasticity of lodging demand. The results of this study of over 3,000 European hotel observations reveal that hotels that offered average daily rates (ADRs) above those of their direct competitors had lower comparative occupancies but higher relative RevPARs. The observed pattern of demand and revenue behavior was consistent for hotels in all market segments from luxury to economy. Country-specific analyses reveal a similar pattern, with more volatility in the results for hotels in Spain and Italy. Overall, the results suggest that the best way for a hotel to have higher revenue performance than its competitive group is to maintain higher rates. The results of this study support the position that hotel operators who resist pressures to undercut competitor's prices may be better served with higher revenues.

Details

Advances in Hospitality and Leisure
Type: Book
ISBN: 978-1-84950-718-9

Article
Publication date: 12 June 2009

Manmatha K. Roul and Sukanta K. Dash

The purpose of this paper is to compute the pressure drop through sudden expansions and contractions for two‐phase flow of oil/water emulsions.

Abstract

Purpose

The purpose of this paper is to compute the pressure drop through sudden expansions and contractions for two‐phase flow of oil/water emulsions.

Design/methodology/approach

Two‐phase computational fluid dynamics (CFD) calculations, using Eulerian–Eulerian model, are employed to calculate the velocity profiles and pressure drops across sudden expansions and contractions. The pressure losses are determined by extrapolating the computed pressure profiles upstream and downstream of the expansion/contraction. The oil concentration is varied over a wide range of 0‐97.3 percent by volume. The flow field is assumed to be axisymmetric and solved in two dimensions. The two‐dimensional equations of mass, momentum, volume fraction and turbulent quantities along with the boundary conditions have been integrated over a control volume and the subsequent equations have been discretized over the control volume using a finite volume technique to yield algebraic equations which are solved in an iterative manner for each time step. The realizable per phase k‐ ε turbulent model is considered to update the fluid viscosity with iterations and capture the individual turbulence in both the phases.

Findings

The contraction and expansion loss coefficients are obtained from the pressure loss and velocity data for different concentrations of oil–water emulsions. The loss coefficients for the emulsions are found to be independent of the concentration and type of emulsions. The numerical results are validated against experimental data from the literature and are found to be in good agreement.

Research limitations/implications

The present computation could not use the surface tension forces and the energy equation due to huge computing time requirement.

Practical implications

The present computation could compute realistically the two‐phase pressure drop through sudden expansions and contractions by using a two‐phase Eulerian model and hence this model can be effectively used for industrial applications where two‐phase flow comes into picture.

Originality/value

The original contribution of the paper is in the use of the state‐of‐the‐art Eulerian two‐phase flow model to predict the velocity profile and pressure drop through industrial piping systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 August 2019

Minqiang Pan, Hongqing Wang, Yujian Zhong, Tianyu Fang and Xineng Zhong

With the increasing heat dissipation of electronic devices, the cooling demand of electronic products is increasing gradually. A water-cooled microchannel heat exchanger is an…

431

Abstract

Purpose

With the increasing heat dissipation of electronic devices, the cooling demand of electronic products is increasing gradually. A water-cooled microchannel heat exchanger is an effective cooling technology for electronic equipment. The structure of a microchannel has great impact on the heat transfer performance of a microchannel heat exchanger. The purpose of this paper is to analyze and compare the fluid flow and heat transfer characteristic of a microchannel heat exchanger with different reentrant cavities.

Design/methodology/approach

The three-dimensional steady, laminar developing flow and conjugate heat transfer governing equations of a plate microchannel heat exchanger are solved using the finite volume method.

Findings

At the flow rate range studied in this paper, the microchannel heat exchangers with reentrant cavities present better heat transfer performance and smaller pressure drop. A microchannel heat exchanger with trapezoidal-shaped cavities has best heat transfer performance, and a microchannel heat exchanger with fan-shaped cavities has the smallest pressure drop.

Research limitations/implications

The fluid is incompressible and the inlet temperature is constant.

Practical implications

It is an effective way to enhance heat transfer and reduce pressure drop by adding cavities in microchannels and the data will be helpful as guidelines in the selection of reentrant cavities.

Originality/value

This paper provides the pressure drop and heat transfer performance analysis of microchannel heat exchangers with various reentrant cavities, which can provide reference for heat transfer augmentation of an existing microchannel heat exchanger in a thermal design.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 29000