Search results

1 – 10 of 586
To view the access options for this content please click here
Article
Publication date: 6 April 2017

Minh Nguyen, Mohammed Melaisi, Brent Cowan, Alvaro Joffre Uribe Quevedo and Bill Kapralos

The purpose of this paper is to examine the application of low-end, low-fidelity (gaming/consumer-level) haptic devices for medical-based, surgical skills development…

Abstract

Purpose

The purpose of this paper is to examine the application of low-end, low-fidelity (gaming/consumer-level) haptic devices for medical-based, surgical skills development (surgical bone-based drilling in particular) with serious games and virtual simulations as an affordable training solution with the potential of complementing current and traditional training methods.

Design/methodology/approach

The authors present the adaptation of two low-end haptic devices (Novint Falcon and Geomagic 3D Touch) to simulate a surgical drill drilling through bone for a serious game developed for total knee arthroplasty training. The implementation was possible through the analysis of the bone drilling mechanics. The authors provide a quantitative comparison of both haptic devices with respect to forces, movements, and development.

Findings

Although further testing is required, the initial results demonstrate that the low-end, consumer-level haptic devices can be incorporated into virtual environments/serious games to allow for the simulation of surgical drilling. The authors also believe that the results will generalize and allow these devices to be used to simulate a variety of technical-based medical procedures.

Originality/value

In contrast to previous work where the focus is placed on cost-prohibitive haptic devices, this approach considers affordable consumer-level solutions that can be easily incorporated into a variety of serious games and virtual simulations. This holds promise that haptic-based virtual simulation and serious games become more widespread, ultimately ensuring that medical trainees are better prepared before exposure to live patients.

Details

World Journal of Science, Technology and Sustainable Development, vol. 14 no. 2/3
Type: Research Article
ISSN: 2042-5945

Keywords

To view the access options for this content please click here
Article
Publication date: 1 June 2002

Lennart Thurfjell, John McLaughlin, Johan Mattsson and Piet Lammertse

Haptics is an emerging technology that allows touch‐enabled interaction with virtual objects. Analogous to the use of computer graphics for rendering of a…

Abstract

Haptics is an emerging technology that allows touch‐enabled interaction with virtual objects. Analogous to the use of computer graphics for rendering of a three‐dimensional (3D) scene to give the user a visual description of the scene, it is possible to use computer haptics to let the user touch objects in the 3D scene. This is normally accomplished by having the haptics engine sending either force vectors or positional information to a haptics device, a robotic arm, that the user manipulates. The purpose of this paper is to give an overview of this technology, describe haptic devices and haptic application programming interfaces. We will also illustrate the use of haptics technology by describing a few industrial and medical applications.

Details

Industrial Robot: An International Journal, vol. 29 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

To view the access options for this content please click here
Article
Publication date: 1 March 2004

Vincent Hayward, Oliver R. Astley, Manuel Cruz‐Hernandez, Danny Grant and Gabriel Robles‐De‐La‐Torre

Haptic interfaces enable person‐machine communication through touch, and most commonly, in response to user movements. We comment on a distinct property of haptic

Abstract

Haptic interfaces enable person‐machine communication through touch, and most commonly, in response to user movements. We comment on a distinct property of haptic interfaces, that of providing for simultaneous information exchange between a user and a machine. We also comment on the fact that, like other kinds of displays, they can take advantage of both the strengths and the limitations of human perception. The paper then proceeds with a description of the components and the modus operandi of haptic interfaces, followed by a list of current and prospective applications and a discussion of a cross‐section of current device designs.

Details

Sensor Review, vol. 24 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 1 December 2003

R.Q. van der Linde and P. Lammertse

This paper describes the technical principles of a high‐performance force controlled robot, called the HapticMaster. It is designed as a generic platform for applications…

Abstract

This paper describes the technical principles of a high‐performance force controlled robot, called the HapticMaster. It is designed as a generic platform for applications with human interaction. Therefore, it differs significantly from most industrial robots on the one hand, whereas it also differs from most haptic interfaces on the other hand due to its power. An admittance control paradigm is used, which facilitates a high joint stiffness in combination with high force sensitivity. Typical applications for the HapticMaster are found in virtual reality, haptics research, and robot rehabilitation.

Details

Industrial Robot: An International Journal, vol. 30 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

To view the access options for this content please click here
Article
Publication date: 8 February 2019

Jose James, Bhavani Rao R. and Gabriel Neamtu

Offering unskilled people training in engineering and vocational skills helps to decrease unemployment rate. The purpose of this paper is to augment actual hands-on…

Abstract

Purpose

Offering unskilled people training in engineering and vocational skills helps to decrease unemployment rate. The purpose of this paper is to augment actual hands-on conventional vocational training methods with virtual haptic simulations as part of computer-based vocational education and training.

Design/methodology/approach

This paper discusses the design of a bi-manual virtual multi-modal training interface for learning basic skills in surface mount device hand soldering. This research aims to analyze human hand dexterity of novices and experts at micro level skill knowledge capture by simulating and tracking the users’ actions in the manual soldering process through a multi-modal user interface.

Findings

Haptic feedback can enhance the experience of a virtual training environment for the end user and can provide a supplementary modality for imparting tangible principles to increase effectiveness. This will improve the teaching and learning of engineering and vocational skills with touch-based haptics technology, targeted toward teachers and students of various disciplines in engineering. Compared with the traditional training methods for learning soldering skills, the proposed method shows more efficiency in faster skill acquisition and skill learning.

Originality/value

In this study, the authors proposed a novel bi-manual virtual training simulator model for teaching soldering skills for surface mount technology and inspection. This research aims to investigate the acquisition of soldering skills through virtual environment, with and without haptic feedback. This acts as a basic-level training simulator that provides introductory training in soldering skills and can help initially unskilled people find educational opportunities and job offers in the electronics industry.

Details

Soldering & Surface Mount Technology, vol. 31 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

To view the access options for this content please click here
Article
Publication date: 2 May 2017

Peter Fernandez

The previous column on educational trends briefly mentioned haptic technology in the context of the future of educational technologies (Fernandez, 2017). However, haptic

Abstract

Purpose

The previous column on educational trends briefly mentioned haptic technology in the context of the future of educational technologies (Fernandez, 2017). However, haptic technology is important enough to merit further consideration on its own terms. Haptic technology is a term that encompasses a set of rapidly evolving technologies centering on recreating the sense of touch, with a wide range of applications, and is poised to influence a wide range of industries and transform how we interact with technology. This paper aims to provide an overview of what haptic technology is and elucidate some of the crucial ways it is likely to develop in the future.

Design/methodology/approach

At its most basic level, haptic technology provides sensory feedback. This can be in service of making an experience more interactive; for example, when playing a video game, the remote control might vibrate in response to what is happening on the screen. It can also provide a wider range of previously unexplored feedback – as when a cell phone vibrates to notify its owner that they have received a text message.

Findings

As the technology around the sense of touch develops, it will have the capacity to provide richer experiences as well as new opportunities for communication. This column will provide an overview of what haptic technology is and elucidate some of the crucial ways it is likely to develop in the future

Originality/value

A fundamental shift is underway in how we interact with our computers and devices. Sensation-based products are being launched across a variety of industries, including consumer electronics, automobiles and health care.

Details

Library Hi Tech News, vol. 34 no. 3
Type: Research Article
ISSN: 0741-9058

Keywords

To view the access options for this content please click here
Article
Publication date: 22 February 2011

Kiho Kim, Byung‐Suk Park, Ho‐Dong Kim, Syed Hassan and Jungwon Yoon

Hot‐cells are shielded structures protecting individuals from radioactive materials. The purpose of this paper is to propose a design approach for a hot‐cell simulator…

Abstract

Purpose

Hot‐cells are shielded structures protecting individuals from radioactive materials. The purpose of this paper is to propose a design approach for a hot‐cell simulator using digital mock‐up (DMU) technology and combining Haptic guided complex robotic manipulation for assembly tasks in a virtual environment.

Design/methodology/approach

The principal reason for developing a simulator was to explore the feasibility of hot‐cell structure design and collision‐free assembly process. For this, a simulation design philosophy has been proposed that includes DMU facility offering the ability of analyzing the operations and performing complex robotic manipulations in the virtual hot‐cell environment. Furthermore, enhanced Haptic mapping for tele‐manipulation is proposed for training and guidance purposes.

Findings

From the analysis and task scenarios performed in virtual simulator, the optimal positions of the manipulators and need of (bridge transport dual arm servo‐manipulators) type were identified. Operation tasks were performed remotely using virtual hot‐cell technology by simulating the scenarios in the DMU reducing the overall operation cost and user training. The graphic simulator substantially reduced the cost of the process and maintenance procedure as well as the process equipment by providing a pre‐analysis of whole scenario for real manipulation.

Originality/value

This research tries to contribute to the virtual hot‐cell design philosophy. Tele‐operated complex robotic operations in DMU technology are performed in virtual hot‐cell. The simulator provides improved Haptic guidance with force and torque feedback enhancing the realism of virtual environment.

Details

Assembly Automation, vol. 31 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

To view the access options for this content please click here
Article
Publication date: 27 September 2011

Pinjun Xia, António Lopes and Maria Restivo

Haptics can significantly enhance the user's sense of immersion and interactivity. Especially in an assembly task, haptic feedback can help designers to have a better…

Abstract

Purpose

Haptics can significantly enhance the user's sense of immersion and interactivity. Especially in an assembly task, haptic feedback can help designers to have a better understanding of virtual objects and to increase task efficiency. The purpose of this paper is to investigate the design and implementation of a haptic‐based virtual assembly system (HVAS).

Design/methodology/approach

A multi‐thread system structure was designed, an automatic data integration interface was developed to transfer geometry, topology, assembly and physics information from a computer‐aided design system to virtual reality application, and a hierarchical constraint‐based data model and scene graph structure was designed to construct the virtual assembly environment. Unlike traditional virtual assembly systems based on collision detection or geometry constraint only, a physics‐based modeling approach combining with haptic feedback and geometry constraint was undertaken to realize and guide the realistic assembly process. When two parts collide into each other, the force and torque can be computed and provide feedback, and a spring‐mass model is used to prevent penetration and simulate dynamic behaviour. When two parts are close enough to each other and the assembly simulation state is activated, a geometry constraint can be captured, an attractive force can be generated to guide the user to assemble the part along the correct position, and the repulsive force can also be generated to realize the mating process as natural and realistic as in real life.

Findings

The implementation details and application examples demonstrate that haptic‐based virtual assembly is a valuable tool for assembly design and process planning.

Originality/value

The paper presents an HVAS.

Details

Assembly Automation, vol. 31 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

To view the access options for this content please click here
Article
Publication date: 1 April 2014

Germanico Gonzalez-Badillo, Hugo I. Medellin-Castillo, Theodore Lim, James M. Ritchie, Raymond C.W. Sung and Samir Garbaya

In this study, a new methodology to evaluate the performance of physics simulation engines (PSEs) when used in haptic virtual assembly applications is proposed. This…

Abstract

Purpose

In this study, a new methodology to evaluate the performance of physics simulation engines (PSEs) when used in haptic virtual assembly applications is proposed. This methodology can be used to assess the performance of any physics engine. To prove the feasibility of the proposed methodology, two-third party PSEs – Bullet and PhysXtm – were evaluated. The paper aims to discuss these issues.

Design/methodology/approach

Eight assembly tests comprising variable geometric and dynamic complexity were conducted. The strengths and weaknesses of each simulation engine for haptic virtual assembly were identified by measuring different parameters such as task completion time, influence of weight perception and force feedback.

Findings

The proposed tests have led to the development of a standard methodology by which physics engines can be compared and evaluated. The results have shown that when the assembly comprises complex shapes, Bullet has better performance than PhysX. It was also observed that the assembly time is directly affected by the weight of virtual objects.

Research limitations/implications

A more comprehensive study must be carried out in order to evaluate and compare the performance of more PSEs. The influence of collision shape representation algorithms on the performance of haptic assembly must be considered in future analysis.

Originality/value

The performance of PSEs in haptic-enabled VR applications had been remained as an unknown issue. The main parameters of physics engines that affect the haptic virtual assembly process have been identified. All the tests performed in this study were carried out with the haptic rendering loop active and the objects manipulated through the haptic device.

Details

Assembly Automation, vol. 34 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Content available
Article
Publication date: 1 March 2004

Abstract

Details

Sensor Review, vol. 24 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 586