Search results

1 – 10 of over 9000
Article
Publication date: 3 October 2016

Chensen Ding, Xiangyang Cui, Chong Li, Guangyao Li and Guoping Wang

Traditional adaptive analysis based on a coarse mesh, using finite element method (FEM) analysis, produces the original solution. Then post-processing the result and figuring out…

Abstract

Purpose

Traditional adaptive analysis based on a coarse mesh, using finite element method (FEM) analysis, produces the original solution. Then post-processing the result and figuring out the regions should be refined and these regions refined once. Finally, this new mesh is used to get the solution of first refinement. After several iterations of above procedures, we can achieve the last result that is closer to the true solution, which takes time, making adaptive scheme inpractical to engineering application. The paper aims to discuss these issues.

Design/methodology/approach

This paper based on FEM proposes a multi-level refinement strategy with a refinement strategy and an indicator. The proposed indicator uses value of the maximum difference of strain energy density among the elements that associated with one node, and divides all nodes into several categories based on the value. A multi-level refinement strategy is proposed according to which category the node belongs to refine different elements to different times rather than whether refine or not.

Findings

Multi-level refinement strategy takes full use of the numerical calculation, resulting in the whole adaptive analysis that only need to iterate twice while other schemes must iterate more times. Using much less times of numerical calculation and approaches, more accurate solution, making adaptive analysis more practical to engineering.

Originality/value

Multi-level refinement strategy takes full use of the numerical calculation, resulting in the whole adaptive analysis only need iterate twice while other schemes must iterate more times. using much less times of numerical calculation and approaches more accurate solution, making adaptive analysis more practical to engineering.

Details

Engineering Computations, vol. 33 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 February 2022

Chang Zhao, Li Zhou and Tao Qiu

Adaptive bump inlet can adaptively change the shape of inlet bump surface according to the flight speed of aircraft, ensuring that the inlet has good inlet-engine match…

Abstract

Purpose

Adaptive bump inlet can adaptively change the shape of inlet bump surface according to the flight speed of aircraft, ensuring that the inlet has good inlet-engine match performance in a wide speed range. This paper aims to use a composite flexible skin reinforced by shape memory alloy (SMA) fiber as the deformable structure at bump surface to realize the adjustable bump surface of adaptive bump inlet.

Design/methodology/approach

According to the deformation and load-bearing requirements of adaptive bump, SMA is applied to the design of adaptive bump inlet due to its characteristic of super-elasticity. A kind of SMA fiber is studied. A composite flexible skin reinforced by SMA is proposed, and its mechanical properties are analyzed. On this basis, an adaptive bump inlet is designed in which the composite flexible skin reinforced by SMA is used as bump surface, and the shape of the bump surface is adjusted by way of pressuring. The design scheme and specific parameters of the adaptive bump are given.

Findings

An adaptive bump surface that meets the design requirements of the inlet is designed, which can effectively adjust the inlet throat area with a throat area change rate of 20%.

Originality/value

An adaptive bump inlet with composite flexible skin as a deformable structure at bump surface is designed, and SMA is applied as the reinforcing fiber.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 January 2010

J.W. Peterson, B.T. Murray and G.F. Carey

The purpose of this paper is to consider double‐diffusive convection in a heated porous medium saturated with a fluid. Of particular interest is the case where the fluid has a…

Abstract

Purpose

The purpose of this paper is to consider double‐diffusive convection in a heated porous medium saturated with a fluid. Of particular interest is the case where the fluid has a stabilizing concentration gradient and small diffusivity.

Design/methodology/approach

A fully‐coupled stabilized finite element scheme and adaptive mesh refinement (AMR) methodology are introduced to solve the resulting coupled multiphysics application and resolve fine scale solution features. The code is written on top of the open source finite element library LibMesh, and is suitable for parallel, high‐performance simulations of large‐scale problems.

Findings

The stabilized adaptive finite element scheme is used to compute steady and unsteady onset of convection in a generalized Horton‐Rogers‐Lapwood problem in both two and three‐dimensional domains. A detailed study confirming the applicability of AMR in obtaining the predicted dependence of solutal Nusselt number on Lewis number is given. A semi‐permeable barrier version of the generalized HRL problem is also studied and is believed to present an interesting benchmark for AMR codes owing to the different boundary and internal layers present in the problem. Finally, some representative adaptive results in a complex 3D heated‐pipe geometry are presented.

Originality/value

This work demonstrates the feasibility of stabilized, adaptive finite element schemes for computing simple double‐diffusive flow models, and it represents an easily‐generalizable starting point for more complex calculations since it is based on a highly‐general finite element library. The complementary nature of h‐adaptivity and stabilized finite element techniques for this class of problem is demonstrated using particularly simple error indicators and stabilization parameters. Finally, an interesting double‐diffusive convection benchmark problem having a semi‐permeable barrier is suggested.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 April 2024

Fangqi Hong, Pengfei Wei and Michael Beer

Bayesian cubature (BC) has emerged to be one of most competitive approach for estimating the multi-dimensional integral especially when the integrand is expensive to evaluate, and…

Abstract

Purpose

Bayesian cubature (BC) has emerged to be one of most competitive approach for estimating the multi-dimensional integral especially when the integrand is expensive to evaluate, and alternative acquisition functions, such as the Posterior Variance Contribution (PVC) function, have been developed for adaptive experiment design of the integration points. However, those sequential design strategies also prevent BC from being implemented in a parallel scheme. Therefore, this paper aims at developing a parallelized adaptive BC method to further improve the computational efficiency.

Design/methodology/approach

By theoretically examining the multimodal behavior of the PVC function, it is concluded that the multiple local maxima all have important contribution to the integration accuracy as can be selected as design points, providing a practical way for parallelization of the adaptive BC. Inspired by the above finding, four multimodal optimization algorithms, including one newly developed in this work, are then introduced for finding multiple local maxima of the PVC function in one run, and further for parallel implementation of the adaptive BC.

Findings

The superiority of the parallel schemes and the performance of the four multimodal optimization algorithms are then demonstrated and compared with the k-means clustering method by using two numerical benchmarks and two engineering examples.

Originality/value

Multimodal behavior of acquisition function for BC is comprehensively investigated. All the local maxima of the acquisition function contribute to adaptive BC accuracy. Parallelization of adaptive BC is realized with four multimodal optimization methods.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 22 March 2013

Nima Tajallipour, Vimal Kumar and Marius Paraschivoiu

The purpose of this paper is to investigate a large‐eddy simulation, using low order numerical discretization and upwinding schemes on unstructured grids, for a turbulent free jet…

Abstract

Purpose

The purpose of this paper is to investigate a large‐eddy simulation, using low order numerical discretization and upwinding schemes on unstructured grids, for a turbulent free jet at Mach number 0.95. The accuracy and stability performance is discussed for the finite element/volume upwinding numerical code used.

Design/methodology/approach

This code is equipped with a self‐adaptive upwinding method which has been previously developed to reduce the numerical dissipation of applied low order flux calculation on unstructured elements using Roe's scheme. Herein, this method is used to numerically investigate a high Reynolds, compressible turbulent free jet and compare the results with a recently published set of experimental data. The effect of grid size is also investigated. A reasonable good agreement with the experimental measurements is obtained.

Findings

Based on the results, it is concluded that the developed self‐adaptive upwinding scheme provides a considerably better emulation of the flow regime in comparison to the full‐upwinding scheme. Different case studies have been carried out to assess the performance of self‐adaptive upwinding method and the effect of the subgrid model.

Originality/value

This paper presents an original research on self‐adaptive upwinding scheme and the effect of the subgrid model on a compressible turbulent free jet.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 1997

Dan Givoli, Joseph E. Flaherty and Mark S. Shephard

Describes a new finite element scheme for the large‐scale analysis of compressible and incompressible viscous flows. The scheme is based on a combined compressible‐ incompressible…

Abstract

Describes a new finite element scheme for the large‐scale analysis of compressible and incompressible viscous flows. The scheme is based on a combined compressible‐ incompressible Galerkin least‐squares (GLS) space‐time variational formulation. Three‐ dimensional unstructured meshes are employed, with piecewise‐constant temporal interpolation, local time‐stepping for steady flows, and linear continuous spatial interpolation in all the variables. The scheme incorporates automatic adaptive mesh refinement, with a choice of various error indicators. It is implemented on a distributed‐memory parallel computer, and includes an automatic load‐balancing procedure. Demonstrates the ability to solve both compressible and incompressible viscous flow problems using the parallel adaptive framework via numerical examples. These include Mach 3 flow over a flat plate, and a divergence‐free buoyancy‐driven flow in a cavity. The latter is a model for the steady melt flow in a Czochralski crystal growth process.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 7 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 June 2008

Aitor Bilbao‐Guillerna, Manuel de la Sen and Santiago Alonso‐Quesada

The purpose of this paper is to improve the transient response and the inter‐sample behavior of a model reference adaptive control system by an appropriate selection of the…

Abstract

Purpose

The purpose of this paper is to improve the transient response and the inter‐sample behavior of a model reference adaptive control system by an appropriate selection of the fractional order hold (FROH) gain β and the multirate gains used in the control reconstruction signal through a fully freely chosen reference model even when the continuous plant possesses unstable zeros.

Design/methodology/approach

A multiestimation adaptive control scheme for linear time‐invariant continuous‐time plant with unknown parameters is presented. The set of discrete adaptive models is calculated from a different combination of the correcting gain β in a FROH and the set of gains to reconstruct the plant input under multirate sampling with fast input sampling. Then the scheme selects online the model with the best continuous‐time tracking performance which includes a measure of the inter‐sample ripple, which is improved. The estimated discrete unstable zeros are avoided through an appropriate design of the multirate gains so that the reference model might be freely chosen with no constraints on potential unstable zeros.

Findings

The scheme is able to select online the discretization model with the best continuous‐time tracking performance without an appropriate initialization.

Research limitations/implications

The switching mechanism among the different models should maintain in operation the active discretization model at least for a minimum residence time in order to guarantee closed‐loop stability. The inter‐sample behavior is improved, but it is not always completely removed.

Practical implications

The transient response and the inter‐sample behavior are improved by using this multiestimation‐based discrete controller compared with a single estimation‐based one. The implementation of discrete controllers makes it easier and cheaper to implement and also more reliable than continuous‐time controllers.

Originality/value

The main innovation of the paper compared with previous background work is that the reference output is supplied by a stable continuous transfer function. Then the scheme is able to partly regulate the continuous‐time tracking error while the controller is essentially discrete‐time and operated by a FROH in general.

Details

Kybernetes, vol. 37 no. 6
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 4 October 2018

Alice de Jesus Kozakevicius, Dia Zeidan, Alex A. Schmidt and Stefan Jakobsson

The purpose of this work is to present the implementation of weighted essentially non-oscillatory (WENO) wavelet methods for solving multiphase flow problems. The particular…

Abstract

Purpose

The purpose of this work is to present the implementation of weighted essentially non-oscillatory (WENO) wavelet methods for solving multiphase flow problems. The particular interest is gas–liquid two-phase mixture with velocity non-equilibrium. Numerical simulations are carried out on different scenarios of one-dimensional Riemann problems for gas–liquid flows. Results are validated and qualitatively compared with solutions provided by other standard numerical methods.

Design/methodology/approach

This paper extends the framework of WENO wavelet adaptive method to a fully hyperbolic two-phase flow model in a conservative form. The grid adaptivity in each time step is provided by the application of a thresholded interpolating wavelet transform. This facilitates the construction of a small yet effective sparse point representation of the solution. The method of Lax–Friedrich flux splitting is used to resolve the spatial operator in which the flux derivatives are approximated by the WENO scheme.

Findings

Hyperbolic models of two-phase flow in conservative form are efficiently solved, as shocks and rarefaction waves are precisely captured by the chosen methodology. Substantial computational gains are obtained through the grid reduction feature while maintaining the quality of the solutions. The results indicate that WENO wavelet methods are robust and sufficient to accurately simulate gas–liquid mixtures.

Originality/value

Resolution of two-phase flows is rarely studied using WENO wavelet methods. It is the first time such a study on the relative velocity is reported in two-phase flows using such methods.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 August 2021

Nigar Ahmed and Mou Chen

The aim of this research paper is to design a disturbance observer (DO)-based robust adaptive tracking control of uncertain nonlinear system subject to unknown nonlinear…

Abstract

Purpose

The aim of this research paper is to design a disturbance observer (DO)-based robust adaptive tracking control of uncertain nonlinear system subject to unknown nonlinear disturbance.

Design/methodology/approach

To achieve desired control objectives, i.e. nonlinear trajectory tracking and disturbance attenuation, firstly, a control scheme is designed based on the adaptive criteria integrated in sliding mode control (SMC). In the second step, the disturbance estimation criterion is designed followed by patching with the controller obtained in the first step. Following the control development, using the Lyapunov candidate function, the stability criterion is ensured by designing appropriate adaptive gains.

Findings

In this paper, a robust adaptive nonlinear tracking method is presented. The findings includes the design of adaptive gains for the control parameters involved in the robust SMC technique, i.e. adaptive criterion is designed for the switching gain as well as for the gain used in sliding mode surface. Furthermore, a disturbance estimation criterion is developed to attenuate nonlinear disturbances with variable frequency and magnitude. Finally, the disturbance estimation scheme is combined with the control technique to obtain DO-based control (DOBC) algorithm.

Practical implications

Sliding mode control is a powerful robust control method. And, combining it with the DO achieves the control objectives of plants subject to disturbances and uncertainties. However, usually the uncertainties and disturbances are unknown and time varying. Thus, during practical implementation, designing the standard SMC is a challenging task due to the constant gains involved in the control design. Hence, it is important to have a criterion which adapts to the varying dynamics of plants due to the uncertainties and disturbances for achieving practical implementation of the control system.

Originality/value

Sliding mode control has been widely used for achieving the desired control objectives and robustness in the close-loop nonlinear systems. Besides, the SMC technique has been combined with the DOs as well. However, mostly the ideal conditions were considered during these developments, which required the control gains to be designed simply by manual tuning appropriately. However, by considering the real-time dynamics, uncertainties and disturbances, the constant control gain criteria can fail. Furthermore, due to external and internal disturbances, the model plant can vary with time. Thus, it is important to design the adaptive criteria for the control gains in DOBC schemes.

Details

Assembly Automation, vol. 41 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 2 November 2015

Afonso C.C Lemonge, Helio J.C. Barbosa and Heder S. Bernardino

– The purpose of this paper is to propose variants of an adaptive penalty scheme for steady-state genetic algorithms applied to constrained engineering optimization problems.

Abstract

Purpose

The purpose of this paper is to propose variants of an adaptive penalty scheme for steady-state genetic algorithms applied to constrained engineering optimization problems.

Design/methodology/approach

For each constraint a penalty parameter is adaptively computed along the evolution according to information extracted from the current population such as the existence of feasible individuals and the level of violation of each constraint. The adaptive penalty method (APM), as originally proposed, computes the constraint violations of the initial population, and updates the penalty coefficient of each constraint after a given number of new individuals are inserted in the population. A second variant, called sporadic APM with constraint violation accumulation, works by accumulating the constraint violations during a given insertion of new offspring into the population, updating the penalty coefficients, and fixing the penalty coefficients for the next generations. The APM with monotonic penalty coefficients is the third variation, where the penalty coefficients are calculated as in the original method, but no penalty coefficient is allowed to have its value reduced along the evolutionary process. Finally, the penalty coefficients are defined by using a weighted average between the current value of a coefficient and the new value predicted by the method. This variant is called the APM with damping.

Findings

The paper checks new variants of an APM for evolutionary algorithms; variants of an APM, for a steady-state genetic algorithm based on an APM for a generational genetic algorithm, largely used in the literature previously proposed by two co-authors of this manuscript; good performance of the proposed APM in comparison with other techniques found in the literature; innovative and general strategies to handle constraints in the field of evolutionary computation.

Research limitations/implications

The proposed algorithm has no limitations and can be applied in a large number of evolutionary algorithms used to solve constrained optimization problems.

Practical implications

The proposed algorithm can be used to solve real world problems in engineering as can be viewed in the references, presented in this manuscript, that use the original (APM) strategy. The performance of these variants is examined using benchmark problems of mechanical and structural engineering frequently discussed in the literature.

Originality/value

It is the first extended analysis of the variants of the APM submitted for possible publication in the literature, applied to real world engineering optimization problems.

Details

Engineering Computations, vol. 32 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 9000