Search results

1 – 10 of over 33000
Article
Publication date: 1 August 2001

Jaroslav Mackerle

Gives a bibliographical review of the error estimates and adaptive finite element methods from the theoretical as well as the application point of view. The bibliography at the…

1667

Abstract

Gives a bibliographical review of the error estimates and adaptive finite element methods from the theoretical as well as the application point of view. The bibliography at the end contains 2,177 references to papers, conference proceedings and theses/dissertations dealing with the subjects that were published in 1990‐2000.

Details

Engineering Computations, vol. 18 no. 5/6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 July 2016

Marcos Arndt, Roberto Dalledone Machado and Adriano Scremin

The purpose of this paper is devoted to present an accurate assessment for determine natural frequencies for uniform and non-uniform Euler-Bernoulli beams and frames by an adaptive

Abstract

Purpose

The purpose of this paper is devoted to present an accurate assessment for determine natural frequencies for uniform and non-uniform Euler-Bernoulli beams and frames by an adaptive generalized finite element method (GFEM). The present paper concentrates on developing the C1 element of the adaptive GFEM for vibration analysis of Euler-Bernoulli beams and frames.

Design/methodology/approach

The variational problem of free vibration is formulated and the main aspects of the adaptive GFEM are presented and discussed. The efficiency and convergence of the proposed method in vibration analysis of uniform and non-uniform Euler-Bernoulli beams are checked. The application of this technique in a frame is also presented.

Findings

The present paper concentrates on developing the C1 element of the adaptive GFEM for vibration analysis of Euler-Bernoulli beams and frames. The GFEM, which was conceived on the basis of the partition of unity method, allows the inclusion of enrichment functions that contain a priori knowledge about the fundamental solution of the governing differential equation. The proposed enrichment functions are dependent on the geometric and mechanical properties of the element. This approach converges very fast and is able to approximate the frequency related to any vibration mode.

Originality/value

The main contribution of the present study consisted in proposing an adaptive GFEM for vibration analysis of Euler-Bernoulli uniform and non-uniform beams and frames. The GFEM results were compared with those obtained by the h and p-versions of FEM and the c-version of the CEM. The adaptive GFEM has shown to be efficient in the vibration analysis of beams and has indicated that it can be applied even for a coarse discretization scheme in complex practical problems.

Details

Engineering Computations, vol. 33 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 June 2019

Yiyi Dong, Si Yuan and Qinyan Xing

This study aims to propose a general and efficient adaptive strategy with local mesh refinement for two-dimensional (2D) finite element (FE) analysis based on the element energy…

Abstract

Purpose

This study aims to propose a general and efficient adaptive strategy with local mesh refinement for two-dimensional (2D) finite element (FE) analysis based on the element energy projection (EEP) technique.

Design/methodology/approach

In view of the inflexibility of the existing global dimension-by-dimension (D-by-D) recovery method via EEP technique, in which displacements are recovered through element strips, an improved element D-by-D recovery strategy was proposed, which enables the EEP recovery of super-convergent displacements to be implemented mostly on a single element. Accordingly, a posteriori error estimate in maximum norm was established and an EEP-based adaptive FE strategy of h-version with local mesh refinement was developed.

Findings

Representative numerical examples, including stress concentration and singularity problems, were analyzed; the results of which show that the adaptively generated meshes reasonably reflect the local difficulties inherent in the physical problems and the proposed adaptive analysis can produce FE displacement solutions satisfying the user-specified tolerances in maximum norm with an almost optimal adaptive convergence rate.

Originality/value

The proposed element D-by-D recovery method is a more efficient and flexible displacement recovery method, which is implemented mostly on a single element. The EEP-based adaptive FE analysis can produce displacement solutions satisfying the specified tolerances in maximum norm with an almost optimal convergence rate and thus can be expected to apply to other 2D problems.

Article
Publication date: 30 April 2020

Kaifeng Jiang, Si Yuan and Qinyan Xing

This paper aims to propose a new adaptive strategy for two-dimensional (2D) nonlinear finite element (FE) analysis of the minimal surface problem (MSP) based on the element energy…

Abstract

Purpose

This paper aims to propose a new adaptive strategy for two-dimensional (2D) nonlinear finite element (FE) analysis of the minimal surface problem (MSP) based on the element energy projection (EEP) technique.

Design/methodology/approach

By linearizing nonlinear problems into a series of linear problems via the Newton method, the EEP technique, which is an effective and reliable point-wise super-convergent displacement recovery strategy for linear FE analysis, can be directly incorporated into the solution procedure. Accordingly, a posteriori error estimate in maximum norm was established and an adaptive 2D nonlinear FE strategy of h-version mesh refinement was developed.

Findings

Three classical known surfaces, including a singularity problem, were analysed. Moreover, an example whose analytic solution is unavailable was considered and a comparison was made between present results and those computed by the MATLAB PDE toolbox. The results show that the adaptively-generated meshes reflect the difficulties inherent in the problems and the proposed adaptive analysis can produce FE solutions satisfying the user-preset error tolerance in maximum norm with a fair adaptive convergence rate.

Originality/value

The EEP technique for linear FE analysis was extended to the nonlinear procedure of MSP and can be expected to apply to other 2D nonlinear problems. The employment of the maximum norm makes point-wisely error control on the sought surfaces possible and makes the proposed method distinguished from other adaptive FE analyses.

Article
Publication date: 1 August 1997

Mehmet Oktemgil and Gordon Greenley

In the literature it is proposed that high adaptive capability is associated with high costs and internal inefficiency, despite the potential benefits to be gained from being…

2303

Abstract

In the literature it is proposed that high adaptive capability is associated with high costs and internal inefficiency, despite the potential benefits to be gained from being adaptive. Investigates a set of adaptability variables that have not been previously researched and, therefore, takes an alternative focus on adaptive capability. Identifies two distinct degrees of high and low adaptive capability in an empirical UK study. Suggests that companies with high adaptive capability seemingly perform better than low adapters, despite the implication of high costs and inefficiency. High adapters also seem to have more comprehensive market orientation and decision‐making style, although they appear to operate in more turbulent external environments. The results extend the current adaptive capability literature, and directions for further research are proposed.

Details

European Journal of Marketing, vol. 31 no. 7
Type: Research Article
ISSN: 0309-0566

Keywords

Article
Publication date: 3 February 2023

Haohan Sun and Si Yuan

An improved adaptive finite element analysis based on local error estimate is proposed via the element energy projection (EEP) technique. This paper aims to discuss the…

Abstract

Purpose

An improved adaptive finite element analysis based on local error estimate is proposed via the element energy projection (EEP) technique. This paper aims to discuss the aforementioned idea.

Design/methodology/approach

The computational region for a posteriori error estimation based on EEP method is further confined to a critical set of local elements generated in the previous adaptive step, enhancing efficiency while maintaining accuracy. The adaptive procedure incorporated with hierarchical mesh refinement is then developed.

Findings

The effectiveness of the improved error estimation of the overall adaptive analysis is confirmed by several benchmark examples. The results show that the shrinkage of the local computational region has little negative influence on the accuracy of a posteriori error estimation, thus yielding an improved adaptive procedure with simplified logic and reduced cost.

Originality/value

By localizing the computational region for error estimation, two crucial but cumbersome tricks, i.e. treatments of virtual elements and hanging nodes, are removed, giving the proposed approach full clarity and flexibility. The improved adaptive procedure characterizes simpler and faster computational algorithm and can produce results with required accuracy measured in maximum norm.

Details

Engineering Computations, vol. 40 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Abstract

Details

Review of Marketing Research
Type: Book
ISBN: 978-0-85724-727-8

Article
Publication date: 1 December 2001

Jaroslav Mackerle

Gives a bibliographical review of the finite element meshing and remeshing from the theoretical as well as practical points of view. Topics such as adaptive techniques for meshing…

1896

Abstract

Gives a bibliographical review of the finite element meshing and remeshing from the theoretical as well as practical points of view. Topics such as adaptive techniques for meshing and remeshing, parallel processing in the finite element modelling, etc. are also included. The bibliography at the end of this paper contains 1,727 references to papers, conference proceedings and theses/dissertations dealing with presented subjects that were published between 1990 and 2001.

Details

Engineering Computations, vol. 18 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 July 2020

Tadashi Yamaguchi, Yoshihiro Kawase and Shota Ishimura

This paper aims to propose a method to create 3-D finite element meshes automatically using the Delaunay tetrahedralization with the weighted node density technique. Using this…

Abstract

Purpose

This paper aims to propose a method to create 3-D finite element meshes automatically using the Delaunay tetrahedralization with the weighted node density technique. Using this method, the adaptive finite element analysis (FEA) was carried out for the calculation of the magnetic field of an eddy current verification model to clarify the usefulness of the method. Moreover, the error evaluation function for the adaptive FEA was also discussed.

Design/methodology/approach

The method to create the 3-D finite element meshes using the Delaunay tetrahedralization is realized by the weighted node density technique, and Zienkiewicz-Zhu’s error estimator is used as the error evaluation function of the adaptive FEA.

Findings

The magnetic flux density vectors on the node in the error evaluation function for the adaptive FEA should be calculated with the weighted average by the reciprocal of the volume of elements.

Originality/value

This paper describes the method to create 3-D finite element meshes and the comparison among calculation methods of the magnetic flux density vectors on the node for the error estimator.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 February 1987

Ajay Kela, Mukul Saxena and Renato Perucchio

This paper deals initially with a new algorithm for generating automatically, from solid models of mechanical parts, finite element meshes that are organized as spatially…

Abstract

This paper deals initially with a new algorithm for generating automatically, from solid models of mechanical parts, finite element meshes that are organized as spatially addressable quaternary trees (for 2D work) or octal trees (for 3D work). Because such meshes are inherently hierarchical as well as spatially addressable, they permit efficient substructuring techniques to be used for both global analysis and incremental re‐meshing and re‐analysis. The paper summarizes the global and incremental techniques, and presents some results from an experimental closed loop 2D system in which meshing, analysis, error evaluation, and re‐meshing and re‐analysis are done automatically and adaptively. The paper concludes with a progress report on a 3D implementation.

Details

Engineering Computations, vol. 4 no. 2
Type: Research Article
ISSN: 0264-4401

1 – 10 of over 33000