Search results

1 – 10 of over 7000
Article
Publication date: 12 January 2023

Zhixiang Chen

The purpose of this paper is to propose a novel improved teaching and learning-based algorithm (TLBO) to enhance its convergence ability and solution accuracy, making it more…

Abstract

Purpose

The purpose of this paper is to propose a novel improved teaching and learning-based algorithm (TLBO) to enhance its convergence ability and solution accuracy, making it more suitable for solving large-scale optimization issues.

Design/methodology/approach

Utilizing multiple cooperation mechanisms in teaching and learning processes, an improved TBLO named CTLBO (collectivism teaching-learning-based optimization) is developed. This algorithm introduces a new preparation phase before the teaching and learning phases and applies multiple teacher–learner cooperation strategies in teaching and learning processes. Applying modularization idea, based on the configuration structure of operators of CTLBO, six variants of CTLBO are constructed. For identifying the best configuration, 30 general benchmark functions are tested. Then, three experiments using CEC2020 (2020 IEEE Conference on Evolutionary Computation)-constrained optimization problems are conducted to compare CTLBO with other algorithms. At last, a large-scale industrial engineering problem is taken as the application case.

Findings

Experiment with 30 general unconstrained benchmark functions indicates that CTLBO-c is the best configuration of all variants of CTLBO. Three experiments using CEC2020-constrained optimization problems show that CTLBO is one powerful algorithm for solving large-scale constrained optimization problems. The application case of industrial engineering problem shows that CTLBO and its variant CTLBO-c can effectively solve the large-scale real problem, while the accuracies of TLBO and other meta-heuristic algorithm are far lower than CLTBO and CTLBO-c, revealing that CTLBO and its variants can far outperform other algorithms. CTLBO is an excellent algorithm for solving large-scale complex optimization issues.

Originality/value

The innovation of this paper lies in the improvement strategies in changing the original TLBO with two-phase teaching–learning mechanism to a new algorithm CTLBO with three-phase multiple cooperation teaching–learning mechanism, self-learning mechanism in teaching and group teaching mechanism. CTLBO has important application value in solving large-scale optimization problems.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 8 July 2020

Deniz Ustun, Serdar Carbas and Abdurrahim Toktas

In line with computational technological advances, obtaining optimal solutions for engineering problems has become attractive research topics in various disciplines and real…

Abstract

Purpose

In line with computational technological advances, obtaining optimal solutions for engineering problems has become attractive research topics in various disciplines and real engineering systems having multiple objectives. Therefore, it is aimed to ensure that the multiple objectives are simultaneously optimized by considering them among the trade-offs. Furthermore, the practical means of solving those problems are principally concentrated on handling various complicated constraints. The purpose of this paper is to suggest an algorithm based on symbiotic organisms search (SOS), which mimics the symbiotic reciprocal influence scheme adopted by organisms to live on and breed within the ecosystem, for constrained multi-objective engineering design problems.

Design/methodology/approach

Though the general performance of SOS algorithm was previously well demonstrated for ordinary single objective optimization problems, its efficacy on multi-objective real engineering problems will be decisive about the performance. The SOS algorithm is, hence, implemented to obtain the optimal solutions of challengingly constrained multi-objective engineering design problems using the Pareto optimality concept.

Findings

Four well-known mixed constrained multi-objective engineering design problems and a real-world complex constrained multilayer dielectric filter design problem are tackled to demonstrate the precision and stability of the multi-objective SOS (MOSOS) algorithm. Also, the comparison of the obtained results with some other well-known metaheuristics illustrates the validity and robustness of the proposed algorithm.

Originality/value

The algorithmic performance of the MOSOS on the challengingly constrained multi-objective multidisciplinary engineering design problems with constraint-handling approach is successfully demonstrated with respect to the obtained outperforming final optimal designs.

Article
Publication date: 29 June 2020

Wenming Cheng, Hui Wang, Min Zhang and Run Du

The purpose of this paper is to propose an improved proportional topology optimization (IPTO) algorithm for tackling the stress-constrained minimum volume optimization problem…

Abstract

Purpose

The purpose of this paper is to propose an improved proportional topology optimization (IPTO) algorithm for tackling the stress-constrained minimum volume optimization problem, which can meet the requirements that are to get rid of the problems of numerical derivation and sensitivity calculation involved in the process of obtaining sensitivity information and overcome the drawbacks of the original proportional topology optimization (PTO) algorithm.

Design/methodology/approach

The IPTO algorithm is designed by using the new target material volume update scheme and the new density variable update scheme and by introducing the improved density filter (considering the weighting function based on the Gaussian distribution) and Heaviside-type projection operator on the basis of the PTO algorithm. The effectiveness of the IPTO algorithm is demonstrated by solving the stress-constrained minimum volume optimization problems for two numerical examples and being compared with the PTO algorithm.

Findings

The results of this paper show that the uses of the proposed strategies contribute to improving the optimized results and the performance (such as the ability to obtain accurate solutions, robustness and convergence speed) of the IPTO algorithm. Compared with the PTO algorithm, the IPTO algorithm has the advantages of fast convergence speed, enhancing the ability to obtain accurate solutions and improving the optimized results.

Originality/value

This paper achieved the author’s intended purpose and provided a new idea for solving the stress-constrained optimization problem under the premise of avoiding obtaining sensitivity information.

Details

Engineering Computations, vol. 38 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 October 2020

Ali Kaveh, Hossein Akbari and Seyed Milad Hosseini

This paper aims to present a new physically inspired meta-heuristic algorithm, which is called Plasma Generation Optimization (PGO). To evaluate the performance and capability of…

Abstract

Purpose

This paper aims to present a new physically inspired meta-heuristic algorithm, which is called Plasma Generation Optimization (PGO). To evaluate the performance and capability of the proposed method in comparison to other optimization methods, two sets of test problems consisting of 13 constrained benchmark functions and 6 benchmark trusses are investigated numerically. The results indicate that the performance of the proposed method is competitive with other considered state-of-the-art optimization methods.

Design/methodology/approach

In this paper, a new physically-based metaheuristic algorithm called plasma generation optimization (PGO) algorithm is developed for solving constrained optimization problems. PGO is a population-based optimizer inspired by the process of plasma generation. In the proposed algorithm, each agent is considered as an electron. Movement of electrons and changing their energy levels are based on simulating excitation, de-excitation and ionization processes occurring through the plasma generation. In the proposed PGO, the global optimum is obtained when plasma is generated with the highest degree of ionization.

Findings

A new physically-based metaheuristic algorithm called the PGO algorithm is developed that is inspired from the process of plasma generation.

Originality/value

The results indicate that the performance of the proposed method is competitive with other state-of-the-art methods.

Details

Engineering Computations, vol. 38 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 May 2008

Ting‐Yu Chen and Meng‐Cheng Chen

The purpose of this paper is to improve and to extend the use of original rank‐niche evolution strategy (RNES) algorithm to solve constrained and unconstrained multiobjective…

Abstract

Purpose

The purpose of this paper is to improve and to extend the use of original rank‐niche evolution strategy (RNES) algorithm to solve constrained and unconstrained multiobjective optimization problems.

Design/methodology/approach

A new mutation step size is developed for evolution strategy. A mixed ranking procedure is used to improve the quality of the fitness function. A self‐adaptive sharing radius is developed to save computational time. Four constraint‐treating methods are developed to solve constrained optimization problems. Two of them do not use penalty function approach.

Findings

The improved RNES algorithm finds better quality Pareto‐optimal solutions more efficiently than the previous version. For most test problems, the solutions obtained by improved RNES are better than, or at least can be compared with, results from other papers.

Research limitations/implications

The application of any evolutionary algorithm to real structural optimization problems would face a problem of spending huge computational time. Some approximate analysis method needs to be incorporated with RNES to solve practical problems.

Originality/value

This paper provides an easier approach to find Pareto‐optimal solutions using an evolutionary algorithm. The algorithm can be used to solve both unconstrained and constrained problems.

Details

Engineering Computations, vol. 25 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 June 2021

Moaaz Elkabalawy and Osama Moselhi

This paper aims to present an integrated method for optimized project duration and costs, considering the size and cost of crews assigned to project activities' execution modes.

455

Abstract

Purpose

This paper aims to present an integrated method for optimized project duration and costs, considering the size and cost of crews assigned to project activities' execution modes.

Design/methodology/approach

The proposed method utilizes fuzzy set theory (FSs) for modeling uncertainties associated with activities' duration and cost and genetic algorithm (GA) for optimizing project schedule. The method has four main modules that support two optimization methods: modeling uncertainty and defuzzification module; scheduling module; cost calculations module; and decision-support module. The first optimization method uses the elitist non-dominated sorting genetic algorithm (NSGA-II), while the second uses a dynamic weighted optimization genetic algorithm. The developed scheduling and optimization methods are coded in python as a stand-alone automated computerized tool to facilitate the developed method's application.

Findings

The developed method is applied to a numerical example to demonstrate its use and illustrate its capabilities. The method was validated using a multi-layered comparative analysis that involves performance evaluation, statistical comparisons and stability evaluation. Results indicated that NSGA-II outperformed the weighted optimization method, resulting in a better global optimum solution, which avoided local minima entrapment. Moreover, the developed method was constructed under a deterministic scenario to evaluate its performance in finding optimal solutions against the previously developed literature methods. Results showed the developed method's superiority in finding a better optimal set of solutions in a reasonable processing time.

Originality/value

The novelty of the proposed method lies in its capacity to consider resource planning and project scheduling under uncertainty simultaneously while accounting for activity splitting.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 5
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 5 January 2010

A. Kaveh and S. Talatahari

The computational drawbacks of existing numerical methods have forced researchers to rely on heuristic algorithms. Heuristic methods are powerful in obtaining the solution of…

1596

Abstract

Purpose

The computational drawbacks of existing numerical methods have forced researchers to rely on heuristic algorithms. Heuristic methods are powerful in obtaining the solution of optimization problems. Although they are approximate methods (i.e. their solution are good, but not provably optimal), they do not require the derivatives of the objective function and constraints. Also, they use probabilistic transition rules instead of deterministic rules. The purpose of this paper is to present an improved ant colony optimization (IACO) for constrained engineering design problems.

Design/methodology/approach

IACO has the capacity to handle continuous and discrete problems by using sub‐optimization mechanism (SOM). SOM is based on the principles of finite element method working as a search‐space updating technique. Also, SOM can reduce the size of pheromone matrices, decision vectors and the number of evaluations. Though IACO decreases pheromone updating operations as well as optimization time, the probability of finding an optimum solution is not reduced.

Findings

Utilizing SOM in the ACO algorithm causes a decrease in the size of the pheromone vectors, size of the decision vector, size of the search space, the number of function evaluations, and finally the required optimization time. SOM performs as a search‐space‐updating rule, and it can exchange discrete‐continuous search domain to each other.

Originality/value

The suitability of using ACO for constrained engineering design problems is presented, and applied to optimal design of different engineering problems.

Details

Engineering Computations, vol. 27 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 November 2016

Yu-Cheng Chou, Yi-Hua Fan, Madoka Nakajima and Yi-Lin Liao

The purpose of this paper is to present the use of artificial immune systems (AISs) to solve constrained design optimization problems for active magnetic bearings (AMBs).

148

Abstract

Purpose

The purpose of this paper is to present the use of artificial immune systems (AISs) to solve constrained design optimization problems for active magnetic bearings (AMBs).

Design/methodology/approach

This research applies the AIS approach, more specifically, a representative clonal selection-based AIS called CLONALG, to the single-objective structural design optimization of AMBs. In addition, when compared with a genetic algorithm (GA) developed in the previous work, the CLONALG fails to produce best solutions when a nearly zero feasible ratio occurs in an AMB design problem. Therefore, an AIS called ARISCO (AIS for constrained optimization) is proposed to address the above issue.

Findings

A total of six AMB design cases are solved by the GA, CLONALG, and ARISCO. Based on the simulation results, in terms of solution quality, the ARISCO is shown to have better overall performance than the CLONALG and GA. In particular, when solving a problem with a nearly zero feasible ratio, the ARISCO and GA perform equally and both outperform the CLONALG.

Originality/value

In summary, the contributions of this paper include: this research applies the AIS approach, more precisely, the CLONALG, to the single-objective structural design optimization of AMBs; the ARISCO overall produces better AMB designs than the CLONALG and a GA developed in the previous work; in situations where a nearly zero feasible ratio occurs, the ARISCO and GA perform equally, and they both outperform the CLONALG.

Details

Engineering Computations, vol. 33 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 22 August 2008

Angel E. Muñoz Zavala, Arturo Hernández Aguirre, Enrique R. Villa Diharce and Salvador Botello Rionda

The purpose of this paper is to present a new constrained optimization algorithm based on a particle swarm optimization (PSO) algorithm approach.

Abstract

Purpose

The purpose of this paper is to present a new constrained optimization algorithm based on a particle swarm optimization (PSO) algorithm approach.

Design/methodology/approach

This paper introduces a hybrid approach based on a modified ring neighborhood with two new perturbation operators designed to keep diversity. A constraint handling technique based on feasibility and sum of constraints violation is adopted. Also, a special technique to handle equality constraints is proposed.

Findings

The paper shows that it is possible to improve PSO and keeping the advantages of its social interaction through a simple idea: perturbing the PSO memory.

Research limitations/implications

The proposed algorithm shows a competitive performance against the state‐of‐the‐art constrained optimization algorithms.

Practical implications

The proposed algorithm can be used to solve single objective problems with linear or non‐linear functions, and subject to both equality and inequality constraints which can be linear and non‐linear. In this paper, it is applied to various engineering design problems, and for the solution of state‐of‐the‐art benchmark problems.

Originality/value

A new neighborhood structure for PSO algorithm is presented. Two perturbation operators to improve PSO algorithm are proposed. A special technique to handle equality constraints is proposed.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 1 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 1 March 1984

B.H.V. Topping and D.J. Robinson

The use of three non‐linear mathematical programming techniques for the optimization of structural design problems is discussed. The methods — sequential linear programming, the…

Abstract

The use of three non‐linear mathematical programming techniques for the optimization of structural design problems is discussed. The methods — sequential linear programming, the feasible direction method and the sequential unconstrained minimization technique — are applied to a portal frame problem to enable a study of their convergence efficiency to be studied. These methods are used for both the sizing of the structural members and determining the optimum roof pitch. The sequential linear programming method is shown to be particularly efficient for application to structural design problems. Some comments on the development of computer software for structural optimization are also given.

Details

Engineering Computations, vol. 1 no. 3
Type: Research Article
ISSN: 0264-4401

1 – 10 of over 7000