Search results

1 – 10 of 998
Article
Publication date: 1 March 1942

TO make alloy steel we draw almost entirely upon material from outside the United States. We produce our own molybdenum. Our nickel comes from Canada and so does a part of our…

Abstract

TO make alloy steel we draw almost entirely upon material from outside the United States. We produce our own molybdenum. Our nickel comes from Canada and so does a part of our copper. Manganese and chromium are nearly all imported. We produce some tungsten and substantial amounts of vanadium. Tin, columbium and other vital materials are imported.

Details

Aircraft Engineering and Aerospace Technology, vol. 14 no. 3
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 9 April 2018

Ramesh S. and Jenarthanan M.P.

This study aims to focus on experimenting the performance of aluminum (Al) powder mixed electric discharge machining (PMEDM) of two different materials viz plastic mould die steel…

Abstract

Purpose

This study aims to focus on experimenting the performance of aluminum (Al) powder mixed electric discharge machining (PMEDM) of two different materials viz plastic mould die steel (AISI P20) and nickel-based super alloy (Nimonic 75). This experimental study also focuses on using three different tool materials such as copper, brass and tungsten to analyze their influence on the process output. These materials find many uses in industrial as well as aerospace applications. The performance measures considered in this work are material removal rate (MRR), tool wear rate (TWR) and surface roughness (SR).

Design/methodology/approach

The experimental design used in this work is based on Taguchi’s L18 orthogonal array. Besides considering work and tool material as one of the process variables, other process variables are peak current (Ip), pulse on time (Ton) and concentration of powder (Cp). The analysis of variance (ANOVA) is performed on the experimental data to determine the significant variables that influence the output.

Findings

It is found that copper produced maximum MRR and brass tool exhibited higher TWR. However, the surface finish of the machined work piece was very much improved by using the brass tool. Though the performance of tungsten tool lies between the above two tool materials, it showed very little wear during EDM with or without the addition of Al powder.

Originality/value

The experimental investigation of PMEDM of nickel-based super alloy (Nimonic 75) has not been attempted before. Besides that, the study on the influence of tungsten tool on the performance of EDM is also very limited.

Details

World Journal of Engineering, vol. 15 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 April 2018

Ramesh S., M.P. Jenarthanan and Bhuvanesh Kanna A.S.

The purpose of this paper is to investigate the performance of powder-mixed electric discharge machining (PMEDM) using three different powders which are aluminium (Al), silicon…

Abstract

Purpose

The purpose of this paper is to investigate the performance of powder-mixed electric discharge machining (PMEDM) using three different powders which are aluminium (Al), silicon carbide (SiC) and aluminium oxide (Al2O3). Besides that, the influence of different tool materials was also studied in this experimental investigation. Hence, the work material selected for this purpose was AISI P20 steel and tool materials were copper, brass and tungsten. The performance measures considered in this work were material removal rate (MRR), tool wear rate and radial over cut (ROC).

Design/methodology/approach

The process variables considered in this study were powder types, powder concentration, tool materials, peak current and pulse on time. The experimental design, based on Taguchi’s L27 orthogonal array, was adopted to conduct experiments. Significant parameters were identified by performing the analysis of variance on the experimental data.

Findings

Based on the analysis of results, it was observed that copper tool combined with Al powder produced maximum MRR (58.35 mm3/min). Similarly, the Al2O3 powder combined with tungsten tool has resulted least ROC (0.04865 mm). It was also observed that wear rate of tungsten tool was very low (0.0145 mm3/min).

Originality/value

The experimental investigation of PMEDM involving three different powders (Al, SiC and Al2O3) was not attempted before. Moreover, the study of influence of different tool materials (Cu, brass and W) together with the different powders on the electric discharge machining performance was very limited.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 September 1965

A Selection of Equipment of Use in the Production and Maintenance of Aircraft, Missiles, Space Vehicles and their Components. To enable information on the correct application of…

Abstract

A Selection of Equipment of Use in the Production and Maintenance of Aircraft, Missiles, Space Vehicles and their Components. To enable information on the correct application of feeds and speeds for tungsten carbide tip cutters to be available quickly, the Anstey (Leicestershire) machine tool and tungsten carbide tool and cutter manufacturing firms within the Marwin Group have produced a slide rule calculator which is to be issued to customers. Companies in the Group include Marwin (Anstey) Ltd., Marwin Machine Tools Ltd., Marwin Engineering Ltd. and Marwin Designs Ltd.

Details

Aircraft Engineering and Aerospace Technology, vol. 37 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 12 August 2021

Amrita M., Rukmini Srikant Revuru, Sreeram Chatti, Sree Satya Bharati Sri Satya Moram, Chandu Byram and Venugopal Rao Soma

Ti6Al4V is a commonly used titanium alloy with several applications in aerospace industry due to its excellent strength to weight ratio. But due to low thermal conductivity, it is…

Abstract

Purpose

Ti6Al4V is a commonly used titanium alloy with several applications in aerospace industry due to its excellent strength to weight ratio. But due to low thermal conductivity, it is categorized as “difficult to machine.” Though machinability can be improved with cutting fluids, it is not preferred due to associated problems. This study aims at eliminating the use of cutting fluid and finding an alternate solution to dry machining of Ti6Al4V. AlTiN coated tools provide good heat and oxidation resistance but have low lubricity. In the present work, graphene, which is known for lubricating properties, is added to the tools using five different methods (tool condition) to form graphene self-lubricated cutting tools.

Design/methodology/approach

Graphene-based self-lubricating tools are prepared by using five methods: dip coating (10 dips and 30 dips); drop casting; and filling of micro/macroholes. Performance of these tools is evaluated in terms of cutting forces, surface roughness and tool wear by machining Ti6Al4V and comparing with conventional coated cutting tool.

Findings

Self-lubricating tool with micro holes filled with graphene outperformed other tools and showed maximum decrease of 33.42% in resultant cutting forces, 35% in surface roughness (Ra) and 30% in flank wear compared to conventional cutting tool.

Originality/value

Analysis of variance for all forces show that tool condition and machining time have significant influence on all components of cutting forces and resultant cutting forces.

Details

World Journal of Engineering, vol. 19 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 November 1959

A. Pigott

THE USE OF URANIUM as a nuclear fuel has posed a variety of fabricating problems, and among these has been the machining of suitable components. For structural or fuel “canning”…

Abstract

THE USE OF URANIUM as a nuclear fuel has posed a variety of fabricating problems, and among these has been the machining of suitable components. For structural or fuel “canning” purposes only a limited number of metals are suitable from a compatibility and nuclear property point of view and include Niobium, Vanadium, Zirconium and Beryllium. These form part of the refractory metal group well known for the difficulties associated with extraction, purification and fabrication.

Details

Industrial Lubrication and Tribology, vol. 11 no. 11
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 21 December 2022

Ravinder Kumar and Sahendra Pal Sharma

This experimental study aims to deal with the improvement of process performance of electric discharge drilling (EDD) for fabricating true blind holes in titanium alloy Ti6Al4V…

Abstract

Purpose

This experimental study aims to deal with the improvement of process performance of electric discharge drilling (EDD) for fabricating true blind holes in titanium alloy Ti6Al4V. Micro EDD was performed on Ti6Al4V and blind holes were drilled into the workpiece.

Design/methodology/approach

The effects of input parameters (i.e. voltage, capacitance and spindle speed) on responses (i.e. material removal rate, tool wear rate and surface roughness [SR]) were evaluated through response surface methodology. The data was analyzed using analysis of variance and multi-optimization was performed for the optimized set of parameters. The optimized process parameters were then used to drill deeper blind holes.

Findings

Blind holes have few characteristics such as SR, taper angle and corner radius. The value of corner radius reflects the quality of the hole produced as well as the amount of tool roundness. The optimized process parameters suggested by the current experimental study lower down the response values (i.e. SR, taper angle and corner radius). The process is found very effective in producing finished blind holes.

Originality/value

This experimental study establishes EDD as a feasible process for the fabrication of truly blind holes in Ti6Al4V.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 September 1941

THE considerations involved in the successful machining of aluminium and its alloys have sprung into particular prominence during the last year or so with the greatly increased…

Abstract

THE considerations involved in the successful machining of aluminium and its alloys have sprung into particular prominence during the last year or so with the greatly increased use of these materials under the armaments expansion programme. Numerous firms who have hitherto confined their attentions to steels and non‐ferrous metals like brass and copper arc now engaged in the mass production of parts machined from extruded, rolled and cast aluminium and aluminium alloys. These light metals are by no means difficult to machine but their particular properties require a special technique if full advantage is to be taken of the economy resulting from the high speed at which they may be worked.

Details

Aircraft Engineering and Aerospace Technology, vol. 13 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 7 June 2021

Ranjith R. and S. Nalin Vimalkumar

The most difficult tasks in the design and development of products for diverse engineering applications were the selection of suitable materials. Choice of inappropriate process…

Abstract

Purpose

The most difficult tasks in the design and development of products for diverse engineering applications were the selection of suitable materials. Choice of inappropriate process variables leads to poor performance, which increases the cost of the product. The selection of the best option of available alternatives is important to improve the performance and productivity of the manufacturing enterprises.

Design/methodology/approach

The paper aims to develop Hybrid Multi-Criteria Decision Making (HMCDM) by integrating two potential optimization techniques Elimination Et Choix Traduisant la REalité and multi-objective optimization on the basis of ratio analysis. The weight of the criteria was calculated using the critic weight method.

Findings

The efficiency and flexibility of the proposed HMCDM technique were illustrated and validated by two examples. In the first case, the best electrode material among the five available alternatives was selected for the electrical discharge machining of AZ91/B4Cp magnesium composites. In the second case, the optimum weight percentage of composites providing the best tribological properties was chosen.

Originality/value

It was noted that the HMCDM methodology was quite simple to comprehend, easy to apply and provided reliable rankings of the material alternatives. The proposed hybrid algorithm is suitable for product optimization as well as design optimization.

Details

World Journal of Engineering, vol. 19 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 March 2008

C.Y. Hsu, C.K. Huang and G.J. Tzou

This purpose of this study is to investigate an effective method to manufacture propellers.

1118

Abstract

Purpose

This purpose of this study is to investigate an effective method to manufacture propellers.

Design/methodology/approach

The investment casting process and injection molding process have been applied separately to the rapid prototyping/rapid tooling (RP/RT) to obtain metal (Al‐Si alloy) propellers and plastic (Acrylonitrile butadiene styrene – ABS) propellers. The two different manufacturing processes were compared following the same master model (MM). The Moldflow software is used to optimize the experimental parameters of the molding. Furthermore, a gypsum type of powder is used to produce the RP MM of the propeller according to the Pro‐E software. The RP MM then is filled with a metallic resin material (at room temperature) to obtain a wax mold. Then, this wax mold was coating by dipping the ZrO2 slurry to improve heat resistant ability, and following solidification, and then filled with metal alloy to obtain metal (Al‐Si alloy) propellers. Another process, the RP MM by dipping the ZrO2 slurry to increase the heat resistance and then is filled with aluminum alloy and an injection mold can be obtained, the plastic (ABS) propellers can be duplicated. To ensure the precision of dimension and improves the surface roughness for the RT (metallic resin mold and aluminum alloy mold), the contour of the duplicated molds were milling with the high‐speed CNC manufacturing program.

Findings

The advantage of this process is that combining the RP/RT system with the high‐speed CNC machining center enables easy production of injection molds.

Originality/value

This process provides engineers with a quick way to fabricate parts and modify the designs. This study demonstrates that this process provides a practical way to fabricate parts and saves the cost and time which increases market competition. The molds with high precision and good surface roughness were duplicated by the rapid‐prototype technique. Furthermore, this investigation demonstrates that: if the product contains special shapes? The material requires a large amount of cutting? or In the case of expensive and hard to machine materials, the proposed process is the best choice to duplicate cost‐effective mold.

Details

Rapid Prototyping Journal, vol. 14 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 998