Search results

1 – 10 of 292
Article
Publication date: 5 June 2023

Basil C. Sunny, Shajulin Benedict and Rajan M.P.

This paper aims to develop an architecture for 3D printers in an Industrial Internet of Things (IIoT) controlled automated manufacturing environment. An algorithm is proposed to…

Abstract

Purpose

This paper aims to develop an architecture for 3D printers in an Industrial Internet of Things (IIoT) controlled automated manufacturing environment. An algorithm is proposed to estimate the electrical energy consumption of 3D printing jobs, which is used, 3D Printing, Sustainable Manufacturing, Industry 4.0, Electrical Energy Estimation, IIoT to schedule printing jobs on optimal electrical tariff rates.

Design/methodology/approach

An IIoT-enabled architecture with connected pools of 3D printers and an Electrical Energy Estimation System (EEES) are used to estimate the electrical energy requirement of 3D printing jobs. EEES applied the combination of Maximum Likelihood Estimation and a dynamic programming–based algorithm for estimating the electrical energy consumption of 3D printing jobs.

Findings

The proposed algorithm decently estimates the electrical energy required for 3D printing and able to obtain optimal accuracy measures. Experiment results show that the electrical energy usage pattern can be reconstructed with the EEES. It is observed that EEES architecture reduces the peak power demand by scheduling the manufacturing process on low electrical tariff rates.

Practical implications

Proposed algorithm is validated with limited number of experiments.

Originality/value

IIoT with 3D printers in large numbers is the future technology for the automated manufacturing process where controlling, monitoring and analyzing such mass numbers becomes a challenging task. This paper fulfills the need of an architecture for industries to effectively use 3D printers as the main manufacturing tool with the help of IoT. The electrical estimation algorithm helps to schedule manufacturing processes with right electrical tariff.

Details

Rapid Prototyping Journal, vol. 29 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 August 2022

Loan Thi Pham, Thu Nguyen, Thanh Trinh, Anh Nguyen, Quang Do, Bien Bui and Jianzhuang Xiao

This study deals with three major topics: (1) the developed generations of 3D concrete printers, (2) the mix design approach for cement-based materials and (3) laboratory testing.

Abstract

Purpose

This study deals with three major topics: (1) the developed generations of 3D concrete printers, (2) the mix design approach for cement-based materials and (3) laboratory testing.

Design/methodology/approach

The big question is how to approach and follow the trend of 3D concrete printing technology with limited conditions such as printers, technology issues and budget. Therefore, this research focused on dealing with prominent issues, including printing equipment, mixed proportion design approaches and laboratory testing methods will be presented and analyzed.

Findings

The details of three printing equipment, including a printhead, a small-scale 3D printer, a 3D concrete printer and the printing process related to Simplify and Mach3 software, will be revealed. Secondly, the classification and efficient process will be given according to the mixture proportion design method proposed. Thirdly, laboratory testing will be conducted, including extrudability, buildability and printability. Finally, some highlight conclusions are given based on the appearance and quality of the samples printed.

Research limitations/implications

Research has been carried out with cement-based materials and 3D concrete printer which adopted the screw extruders.

Practical implications

Mix design proportion method via coefficient and slump value proposed by the authors is a relatively effective and convenient method; the rheological properties, printing process and geometry of a sample are the most significant factors that decide the success of the printing work.

Social implications

Additive manufacturing, widely known as 3D printing, has recently drawn the attention of researchers worldwide for a few decades. Thanks to its capability to transform a drawing into an object, the idea of 3D printing has also attracted the attention of engineers, architects and investors.

Originality/value

(1) Mix design proportion via coefficient and slump value proposed by the authors is a relatively effective and convenient method that can be implemented simply at the laboratory or the site. (2) The ranges of coefficients by weight of the water, sand and PP fibers to binder are (0.27–0.3), (0.6–1.0) and around 0.3, respectively. The maximum sand size was smaller than 2.5 mm, and the small amount of PP fibers enhanced the quality and significantly reduced the printed samples' shrinkage. (3) The printability is affected by mix proportion and the relationship between nozzle printing speed parameter and extrusion speed of motor turning. (4) The chosen layer height recommended smaller than 0.83 times nozzle diameter is reasonable and improves adhesions and buildability. (5) The printing open time of the concrete mixture of (12–15) minutes is a barrel to promote 3D concrete printing technology and needs improvement.

Details

Smart and Sustainable Built Environment, vol. 12 no. 5
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 22 April 2024

Pınar Şenel, Hacer Turhan and Erkan Sezgin

Three-dimentional (3D) food printers are innovative technologies that contribute to healthy, personalized and stainable nutrition. However, many consumers are still vigilant about…

Abstract

Purpose

Three-dimentional (3D) food printers are innovative technologies that contribute to healthy, personalized and stainable nutrition. However, many consumers are still vigilant about 3D printed food in the age of technology. The purpose of this study is to develop a scale and propose a model for consumption preferences associated with 3D-printed food (3DPF).

Design/methodology/approach

The developed questionnaire was handed to 192 Z and Y generation participants (Data1) for the exploratory factor analysis stage initially. Then, the questionnaire was handed to another group of 165 participants (Data 2) for verification by confirmatory factor analysis. Finally, the dimensions “healthy and personalized nutrition,” “sustainable nutrition” and “socio-cultural nutrition” were analyzed by structural equation modeling.

Findings

The results indicated that there was a high relationship between “healthy and personalized nutrition” and “sustainable nutrition” as well as between “sustainable nutrition” and “socio-cultural nutrition” when 3DPF was considered.

Originality/value

The study would contribute to the new survey area related to 3DPF by presenting a scale and proposing a model. Also, the study reveals which nutritional factors affect the Z and Y generation’s consumption of 3DPF. In this context, the study aims to make marketing contributions to the food production, restaurant and hotel sectors.

研究目的

3D食品打印机是创新技术, 有助于健康、个性化和可持续的营养。然而, 在科技时代, 许多消费者仍然对3D打印食品保持警惕。本研究的目的是开发一个刻画与3D打印食品相关的消费偏好的量表并提出一个模型。

研究方法

本研究首先将开发的问卷交给192名Z和Y世代参与者(数据1)进行探索性因素分析阶段。然后, 将问卷交给另一组165名参与者(数据2)通过验证性因素分析进行验证。最后, 通过结构方程模型分析了“健康和个性化营养”、“可持续营养”和“社会文化营养”这三个维度。

研究发现

结果表明, 在考虑3D打印食品时, “健康和个性化营养”与“可持续营养”之间以及“可持续营养”与“社会文化营养”之间存在很高的关系。

研究创新

本研究通过提出一个量表并提出一个模型, 为与3D打印食品相关的新调查领域做出了贡献。此外, 研究揭示了影响Z和Y世代对3D打印食品消费的营养因素。在这一背景下, 本研究旨在为食品生产、餐厅和酒店等领域做出营销贡献。

Details

Journal of Hospitality and Tourism Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9880

Keywords

Open Access
Article
Publication date: 7 March 2023

Nanond Nopparat and Damien Motte

Present for more than 20 years, 3D food printing (3DFP) technology has not experienced the same widespread adoption as its non-food counterparts. It is believed that relevant…

1343

Abstract

Purpose

Present for more than 20 years, 3D food printing (3DFP) technology has not experienced the same widespread adoption as its non-food counterparts. It is believed that relevant business models are crucial for its expansion. The purpose of this study is to identify the dominant prototypical business models and patterns in the 3DFP industry. The knowledge gained could be used to provide directions for business model innovation in this industry.

Design/methodology/approach

The authors established a business model framework and used it to analyse the identified 3DFP manufacturers. The authors qualitatively identified the market’s prototypical business models and used agglomerative hierarchical clustering to extract further patterns.

Findings

All identified 3DFP businesses use the prototypical business model of selling ownership of physical assets, with some variations. Low-cost 3D food printers for private usage and dedicated 3D food printers for small-scale food producers are the two primary patterns identified. Furthermore, several benefits of 3DFP technology are not being used, and the identified manufacturers are barely present in high-revenue markets, which prevents them from driving technological innovation forward.

Practical implications

The extracted patterns can be used by the companies within the 3DFP industry and even in other additive manufacturing segments to reflect upon, refine or renew their business model. Some directions for business model innovation in this industry are provided.

Originality/value

To the best of the authors’ knowledge, this is the first quantitative study to give an account of the current 3DFP business models and their possible evolution. This study also contributes to the business model patterns methodological development.

Details

International Journal of Innovation Science, vol. 16 no. 1
Type: Research Article
ISSN: 1757-2223

Keywords

Article
Publication date: 1 April 2022

Prashil Desai and R.N. Jagtap

There is a rising demand for high-performance 3D printed objects that have established potential applications in the sector of dental, automotive, electronics, aerospace, etc…

152

Abstract

Purpose

There is a rising demand for high-performance 3D printed objects that have established potential applications in the sector of dental, automotive, electronics, aerospace, etc. Thus, to meet the requirements of high-performance 3D printed objects, this study has synthesized, formulated and applied a resorcinol epoxy acrylate (REA) oligomer to a stereolithography (SLA) 3D printer.

Design/methodology/approach

Different formulations were developed by blending reactive diluents in the concentration of 10%, 15% and 20%, along with the fixed quantity of photo-initiators in the REA oligomer. The structure of synthesized REA oligomer was confirmed using 13 C nuclear magnetic resonance (NMR) and 1H NMR spectroscopy, and the rheological properties for prepared REA formulations were also evaluated. The ultraviolet (UV)-cured specimens of all REA formulations were thoroughly examined based on physical, chemical, optical, mechanical and thermal properties. The best suitable formulation was selected for SLA 3D printing.

Findings

As perceived, UV cured REA specimens exhibit superior mechanical, chemical and thermal properties, portraying the ability to use as a high-performance material. The increase in the concentration of reactive diluents indicated a significant improvement in the properties of REA resin. The 20% diluted formulation achieved excellent compatibility with a SLA 3D printer; thus, 3D objects are cast with good dimensional stability and printability.

Originality/value

Resorcinol-based resins have always been a key additive used to enhance properties in the coating and tire industry. In a new attempt UV, curable REA has been applied to a SLA 3D printer to cast high-performance 3D printed objects.

Details

Pigment & Resin Technology, vol. 52 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 30 November 2023

Wenbo Li, Bin Dan, Xumei Zhang, Yi Liu and Ronghua Sui

With the rapid development of the sharing economy in manufacturing industries, manufacturers and the equipment suppliers frequently share capacity through the third-party…

Abstract

Purpose

With the rapid development of the sharing economy in manufacturing industries, manufacturers and the equipment suppliers frequently share capacity through the third-party platform. This paper aims to study influences of manufacturers sharing capacity on the supplier and to analyze whether the supplier shares capacity as well as its influences.

Design/methodology/approach

This paper deals with conditions that the supplier and manufacturers share capacity through the third-party platform, and the third-party platform competes with the supplier in equipment sales. Considering the heterogeneity of the manufacturer's earning of unit capacity usage and the production efficiency of manufacturer's usage strategies, this paper constructs capacity sharing game models. Then, model equilibrium results under different sharing scenarios are compared.

Findings

The results show that when the production or maintenance cost is high, manufacturers sharing capacity simultaneously benefits the supplier, the third-party platform and manufacturers with high earnings of unit capacity usage. When both the rental efficiency and the production cost are low, or both the rental efficiency and the production cost are high, the supplier simultaneously sells equipment and shares capacity. The supplier only sells equipment in other cases. When both the rental efficiency and the production cost are low, the supplier’s sharing capacity realizes the win-win-win situation for the supplier, the third-party platform and manufacturers with moderate earnings of unit capacity usage.

Originality/value

This paper innovatively examines supplier's selling and sharing decisions considering manufacturers sharing capacity. It extends the research on capacity sharing and is important to supplier's operational decisions.

Details

Industrial Management & Data Systems, vol. 124 no. 2
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 24 January 2024

Nirmal Singh, Harmanjit Singh Banga, Jaswinder Singh and Rajnish Sharma

This paper aims to prompt ideas amongst readers (especially librarians) about how they can become active partners in knowledge dissemination amongst concerned user groups by…

Abstract

Purpose

This paper aims to prompt ideas amongst readers (especially librarians) about how they can become active partners in knowledge dissemination amongst concerned user groups by implementing 3D printing technology under the “Makerspace.”

Design/methodology/approach

The paper provides a brief account of various tools and techniques used by veterinary and animal sciences institutions for information dissemination amongst the stakeholders and associated challenges with a focus on the use of 3D printing technology to overcome the bottlenecks. An overview of the 3D printing technology has been provided following the instances of use of this novel technology in veterinary and animal sciences. An initiative of the University Library, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, to harness the potential of this technology in disseminating information amongst livestock stakeholders has been discussed.

Findings

3D printing has the potential to enhance learning in veterinary and animal sciences by providing hands-on exposure to various anatomical structures, such as bones, organs and blood vessels, without the need for a cadaver. This approach enhances students’ spatial understanding and helps them better understand anatomical concepts. Libraries can enhance their visibility and can contribute actively to knowledge dissemination beyond traditional library services.

Originality/value

The ideas about how to harness the potential of 3D printing in knowledge dissemination amongst livestock sector stakeholders have been elaborated. This promotes creativity amongst librarians enabling them to think how they can engage in knowledge dissemination thinking out of the box.

Details

Library Hi Tech News, vol. 41 no. 2
Type: Research Article
ISSN: 0741-9058

Keywords

Book part
Publication date: 1 February 2024

Özge Çaylak Dönmez and Burhan Sevim

Three-dimensional (3D) printing has great potential in the food industry. While 3D printing technology offers customised food products to consumers, it also allows producers to…

Abstract

Three-dimensional (3D) printing has great potential in the food industry. While 3D printing technology offers customised food products to consumers, it also allows producers to develop new products using a wide variety of alternative food ingredients, modernise the production process and carry out environmentally friendly production. This research aims to determine the attitudes of students towards 3D foods who are studying in the Department of Gastronomy and Culinary Arts, as they are both consumers and examine different food processing systems and use them in the field of application. As a result of the study, it was identified that the participants believed that 3D printing is a great modern technology that allows the development of new foods, that it will bring benefit to us in the future, reduce the cost of food and food waste, increase the sustainability of food and that they see it as environmentally friendly. In addition, it was determined that the participants did not think that 3D-printed foods were disgusting; they found these foods reliable, could try them in the future and were excited to experience them.

Article
Publication date: 26 March 2024

Vishal Mishra, Ch Kapil Ror, Sushant Negi and Simanchal Kar

This study aims to present an experimental approach to develop a high-strength 3D-printed recycled polymer composite reinforced with continuous metal fiber.

56

Abstract

Purpose

This study aims to present an experimental approach to develop a high-strength 3D-printed recycled polymer composite reinforced with continuous metal fiber.

Design/methodology/approach

The continuous metal fiber composite was 3D printed using recycled and virgin acrylonitrile butadiene styrene-blended filament (RABS-B) in the ratio of 60:40 and postused continuous brass wire (CBW). The 3D printing was done using an in-nozzle impregnation technique using an FFF printer installed with a self-modified nozzle. The tensile and single-edge notch bend (SENB) test samples are fabricated to evaluate the tensile and fracture toughness properties compared with VABS and RABS-B samples.

Findings

The tensile and SENB tests revealed that RABS-B/CBW composite 3D printed with 0.7 mm layer spacing exhibited a notable improvement in Young’s modulus, ultimate tensile strength, elongation at maximum load and fracture toughness by 51.47%, 18.67% and 107.3% and 22.75% compared to VABS, respectively.

Social implications

This novel approach of integrating CBW with recycled thermoplastic represents a significant leap forward in material science, delivering superior strength and unlocking the potential for advanced, sustainable composites in demanding engineering fields.

Originality/value

Limited research has been conducted on the in-nozzle impregnation technique for 3D printing metal fiber-reinforced recycled thermoplastic composites. Adopting this method holds the potential to create durable and high-strength sustainable composites suitable for engineering applications, thereby diminishing dependence on virgin materials.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 August 2023

Ruifan Chang and Maxwell Fordjour Antwi-Afari

The application of three-dimensional (3D) printing technology in construction projects is of increasing interest to researchers and construction practitioners. Although the…

Abstract

Purpose

The application of three-dimensional (3D) printing technology in construction projects is of increasing interest to researchers and construction practitioners. Although the application of 3D printing technology at various stages of the project lifecycle has been explored, few studies have identified the relative importance of critical success factors (CSFs) for implementing 3D printing technology in construction projects. To address this research gap, this study aims to explore the academics (i.e. researchers) and construction practitioners’ perspectives on CSFs for implementing 3D printing technology in construction projects.

Design/methodology/approach

To do this, a questionnaire was administered to participants (i.e. academics and construction practitioners) with knowledge and expertise in 3D printing technology in construction projects. The collected data were analysed using mean score ranking, normalization and rank agreement analysis to identify CSFs and determine the consistency of the ranking of CSFs between academics and construction practitioners. In addition, exploratory factor analysis was used to identify the relationships and underlying constructs of the measured CSFs.

Findings

Through a rank agreement analysis of the collected data, 11 CSFs for implementing 3D printing technology were retrieved (i.e. 17% agreement), indicating a diverse agreement in the ranking of the CSFs between academics and construction practitioners. In addition, the results show three key components of CSFs including “production demand enabling CSFs”, “optimize the construction process enabling CSFs” and “optimized design enabling CSFs”.

Originality/value

This study highlights the feasibility of implementing the identified CSFs for 3D printing technology in construction projects, which not only serves as a reference for other researchers but also increases construction practitioners’ awareness of the practical benefits of implementing 3D printing technology in construction projects. Specifically, it would optimize the construction lifecycle processes, enhance digital transformation and promote sustainable construction projects.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of 292