Search results

1 – 10 of 79
Article
Publication date: 14 August 2024

Ala Taleb Obaidat, Yasmeen Taleb Obaidat and Ahmed Ashteyat

In this experimental investigation, the behavior of strengthened/repaired heat-damaged one-way self-compacted concrete (SCC) slabs with opening utilizing…

Abstract

Purpose

In this experimental investigation, the behavior of strengthened/repaired heat-damaged one-way self-compacted concrete (SCC) slabs with opening utilizing near-surface-mounted-carbon fiber reinforced polymers (NSM-CFRP) strips was explored.

Design/methodology/approach

CFRP strip configurations, number of strips and inclination were all investigated in this study. For three hours, slabs were exposed to temperatures of 23°C and 500°C. Four-point load was applied to control slabs, enhanced slabs and repaired slabs.

Findings

The results indicate that exposing the slabs to high temperatures reduces their load capability. The number of strips and angle of inclination around the slab opening have a considerable impact on the performance of the strengthened and/or repaired slabs, according to the experimental results. The load capacity, toughness and ductility index of a strengthened and/or repaired slab with opening increase as the number of CFRP strips increases by 143.8–150.5%, 137.3–149.9% and 122.3–124.5%, respectively. The use of NSM strips around the opening with zero inclination showed higher load compared to the NSM strips around the opening with other angles.

Originality/value

It is frequently important to construct openings in the slabs for ventilation, electrical supply, and other purposes. Making openings in slabs might affect the structure’s performance since the concrete and reinforcing would be cut off. SCC is a new type of concrete mixture that can fill in all the voids in the formwork with its own weight without the help of external vibration.  As a result, it is necessary to reinforce the slab under flexure and increase the flexural strength of the SCC slab. Therefore, this work investigates the effect of using NSM-CFRP strip  on the behavior of one way SCC slabs that have been heat-damaged.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 11 September 2024

Kapildeo P. Yadav, Sudipta Ghosh, Sujata Rajak and Amiya K. Samanta

One of the often-employed building constituents in the construction sector is concrete, which involves hydration of cement, leading to the generation of carbon footprints during…

Abstract

Purpose

One of the often-employed building constituents in the construction sector is concrete, which involves hydration of cement, leading to the generation of carbon footprints during its production. Also, massive amount of natural aggregate is illegally mined, which poses serious environmental issues along with ecological misbalance. Researchers are in continuous search of appropriate substitutes to mitigate those challenges and develop innovative concrete mix. Consequently, depletion of natural resources, the disturbances to the environmental and ecological imbalance will reduce. The purpose of this study is to develop a Portland Slag Cement based novel sustainable concrete incorporating Alccofine and Recycled Refractory Brick as fractional replacement of cement and fine aggregate, respectively and evaluate its destructive, non-destructive and microstructural properties.

Design/methodology/approach

M25 grade of concrete adopting 0.45 water-binder proportion, with diverse percentage of Alccofine as fractional substitution of cement and 20% of recycled refractory brick (RRB) as fine aggregate, has been cast and evaluated for diverse mechanical strength following a curing of 7, 14 and 28 days. Scanning electron microscopic analysis has been carried out to study the microstructural changes in the specimens.

Findings

Supplementary use of Alccofine enhanced normal compressive strength of sustainable concrete mix blended with Portland Slag Cement by a large amount at all levels of 7, 14 and 28 days of curing. Test results indicated development of a favourable high-strength sustainable concrete mix by substituting cement with Alccofine.

Originality/value

This manuscript has demonstrated the possibility of developing sustainable concrete blends by incorporating Alccofine 1203 and RRB as partial replacement of Portland Slag Cement and natural fine aggregate, respectively. The strength and potential of concrete incorporating RRB for wider and special application in adverse environmental conditions having higher thermal gradient, as RRB is a valuable waste from high temperature kiln and furnaces. Alccofine 1203 has been included in the concrete mix as an alternative to Portland Slag Cement to improve the mechanical strength properties and durability of concrete intended for adverse environmental application.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 December 2023

Balamurali Kanagaraj, N. Anand, Johnson Alengaram and Diana Andrushia

The present work focuses on evaluating the physical and mechanical characteristics of geopolymer concrete (GPC) by replacing the sodium silicate waste (SSW) in place of…

Abstract

Purpose

The present work focuses on evaluating the physical and mechanical characteristics of geopolymer concrete (GPC) by replacing the sodium silicate waste (SSW) in place of traditional river sand. The aim is to create eco-friendly concrete that mitigates the depletion of conventional river sand and conserves natural resources. Additionally, the study seeks to explore how the moisture content of filler materials affects the performance of GPC.

Design/methodology/approach

SSW obtained from the sodium silicate industry was used as filler material in the production of GPC, which was cured at ambient temperature. Instead of the typical conventional river sand, SSW was substituted at 25 and 50% of its weight. Three distinct moisture conditions were applied to both river sand and SSW. These conditions were classified as oven dry (OD), air dry (AD) and saturated surface dry (SSD).

Findings

As the proportion of SSW increased, there was a decrease in the slump of the GPC. The setting time was significantly affected by the higher percentage of SSW. The presence of angular-shaped SSW particles notably improved the compressive strength of GPC when replacing a portion of the river sand with SSW. When exposed to elevated temperatures, the performance of the GPC with SSW exhibited similar behavior to that of the mix containing conventional river sand, but it demonstrated a lower residual strength following exposure to elevated temperatures.

Originality/value

Exploring the possible utilization of SSW as a substitute for river sand in GPC, and its effects on the performance of the proposed mix. Analyzing, how varying moisture conditions affect the performance of GPC containing SSW. Evaluating the response of the GPC with SSW exposed to elevated temperatures in contrast to conventional river sand.

Details

Journal of Structural Fire Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 21 June 2023

Mohamed El Boukhari, Ossama Merroun, Chadi Maalouf, Fabien Bogard and Benaissa Kissi

The purpose of this study is to experimentally determine whether mechanical properties of concrete can be improved by using olive pomace aggregates (OPA) as a substitute for…

Abstract

Purpose

The purpose of this study is to experimentally determine whether mechanical properties of concrete can be improved by using olive pomace aggregates (OPA) as a substitute for natural sand. Two types of OPA were tested by replacing an equivalent amount of natural sand. The first type was OPA mixed with olive mill wastewater (OMW), and the second type was OPA not mixed with OMW. For each type, two series of concrete were produced using OPA in both dry and saturated states. The percentage of partial substitution of natural sand by OPA varied from 0% to 15%.

Design/methodology/approach

The addition of OPA leads to a reduction in the dry density of hardened concrete, causing a 5.69% decrease in density when compared to the reference concrete. After 28 days, ultrasonic pulse velocity tests indicated that the resulting material is of good quality, with a velocity of 4.45 km/s. To understand the mechanism of resistance development, microstructural analysis was conducted to observe the arrangement of OPA and calcium silicate hydrates within the cementitious matrix. The analysis revealed that there is a low level of adhesion between the cement matrix and OPA at interfacial transition zone level, which was subsequently validated by further microstructural analysis.

Findings

The laboratory mechanical tests indicated that the OPCD_OPW (5) sample, containing 5% of OPA, in a dry state and mixed with OMW, demonstrated the best mechanical performance compared to the reference concrete. After 28 days of curing, this sample exhibited a compressive strength (Rc) of 25 MPa. Furthermore, it demonstrated a tensile strength of 4.61 MPa and a dynamic modulus of elasticity of 44.39 GPa, with rebound values of 27 MPa. The slump of the specimens ranged from 5 cm to 9 cm, falling within the acceptable range of consistency (Class S2). Based on these findings, the OPCD_OPW (5) formulation is considered optimal for use in concrete production.

Originality/value

This research paper provides a valuable contribution to the management of OPA and OMW (OPA_OMW) generated from the olive processing industry, which is known to have significant negative environmental impacts. The paper presents an intriguing approach to recycling these materials for use in civil engineering applications.

Article
Publication date: 16 May 2024

Mugahed Amran

The initiative for sustainability in the construction industry has led to the innovative utilization of automobile tire waste, transforming it into value-added products, toward…

Abstract

Purpose

The initiative for sustainability in the construction industry has led to the innovative utilization of automobile tire waste, transforming it into value-added products, toward decarbonization in the construction industry, aligning with the development and sustainability goals of Al-Kharj Governorate. However, the disposal of these materials generates significant environmental concerns. As a payoff for these efforts, this study aims to contribute to a fruitful shift toward eco-friendly recycling techniques, particularly by studying the transformation of tire waste bead wires into recycled steel tire fibers (RSTFs) for sustainable concrete composites.

Design/methodology/approach

This research delves into how this technological transformation not only addresses environmental concerns but also propels sustainable tire innovation forward, presenting a promising solution for waste management and material efficiency in building materials. Recent studies have highlighted the superior tensile strength of RSTFs from discarded tires, making them suitable for various structural engineering applications. Recently, there has been a notable shift in research focus to the use of RSTFs as an alternative to traditional fibers in concrete. In this study, however, efforts have paid off in outlining a comprehensive assessment to investigate the viability and efficacy of repurposing tire bead wires into RSTFs for use in concrete composites, as reported in the literature.

Findings

This study examined the Saudi waste management, the geometrical properties of RSTFs, and their impact on the strength properties of concrete microstructure. It also examined the economic, cost, and environmental impacts of RSTFs on concrete composites, underscoring the need for the construction industry to adopt more sustainable and adaptable practices. Furthermore, the main findings of this study are proposed insights and a blueprint for the construction industry in Al-Kharj Governorate, calling for collective action from both public and private sectors, and the community to transform challenges into job opportunities for growth and sustainability.

Originality/value

This study pointed to thoroughly demonstrate the technological advancement in converting tire waste to reinforcing fibers by evaluating the effectiveness, environmental sustainability, and practicality of these fibers in eco-friendly concrete composites. Besides, the desired properties and standards for RSTFs to enhance the structural integrity of concrete composites are recommended, as is the need to establish protocols and further study into the long-term efficacy of RSTF-reinforced concrete composites.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 2 March 2023

Bahareh Nikmehr, Bidur Kafle and Riyadh Al-Ameri

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in…

Abstract

Purpose

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in concrete. It is vital as the old paste attached to the RCA weakens its structure. It is due to the porous structure of the RCA with cracks, weakening the interfacial transition zone (ITZ) between the RCA and binding material, negatively impacting the concrete's properties. To this end, various methods for reinforcement of the RCA, cleaning the RCA's old paste and enhancing the quality of the RCA-based concrete without RCA modification are studied in terms of environmental effects, cost and technical matters. Furthermore, this research sought to identify gaps in knowledge and future research directions.

Design/methodology/approach

The review of the relevant journal papers revealed that various methods exist for improving the properties of RCAs and RCA-based concrete. A decision matrix was developed and implemented for ranking these techniques based on environmental, economic and technical criteria.

Findings

The identified methods for reinforcement of the RCA include accelerated carbonation, bio deposition, soaking in polymer emulsions, soaking in waterproofing admixture, soaking in sodium silicate, soaking in nanoparticles and coating with geopolymer slurry. Moreover, cleaning the RCA's old paste is possible using acid, water, heating, thermal and mechanical treatment, thermo-mechanical and electro-dynamic treatment. Added to these treatment techniques, using RCA in saturated surface dry (SSD) mixing approaches and adding fibres or pozzolana enhance the quality of the RCA-based concrete without RCA modification. The study ranked these techniques based on environmental, economic and technical criteria. Ultimately, adding fibres, pozzolana and coating RCA with geopolymer slurry were introduced as the best techniques based on the nominated criteria.

Practical implications

The study supported the need for better knowledge regarding the existing treatment techniques for RCA improvement. The outcomes of this research offer an understanding of each RCA enrichment technique's importance in environmental, economic and technical criteria.

Originality/value

The practicality of the RCA treatment techniques is based on economic, environmental and technical specifications for rating the existing treatment techniques.

Details

Smart and Sustainable Built Environment, vol. 13 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 18 March 2024

Lifeng Wang, Fei Yu, Ziwang Xiao and Qi Wang

When the reinforced concrete beams are reinforced by bonding steel plates to the bottom, excessive use of steel plates will make the reinforced concrete beams become…

Abstract

Purpose

When the reinforced concrete beams are reinforced by bonding steel plates to the bottom, excessive use of steel plates will make the reinforced concrete beams become super-reinforced beams, and there are security risks in the actual use of super-reinforced beams. In order to avoid the occurrence of this situation, the purpose of this paper is to study the calculation method of the maximum number of bonded steel plates to reinforce reinforced concrete beams.

Design/methodology/approach

First of all, when establishing the limit failure state of the reinforced member, this paper comprehensively considers the role of the tensile steel bar and steel plate and takes the load effect before reinforcement as the negative contribution of the maximum number of bonded steel plates that can be used for reinforcement. Through the definition of the equivalent tensile strength, equivalent elastic modulus and equivalent yield strain of the tensile steel bar and steel plate, a method to determine the relative limit compression zone height of the reinforced member is obtained. Second, based on the maximum ratio of (reinforcement + steel plate), the relative limit compression zone height and the equivalent tensile strength of the tensile steel bar and steel plate of the reinforced member, the calculation method of the maximum number of bonded steel plates is derived. Then, the static load test of the test beam is carried out and the corresponding numerical model is established, and the reliability of the numerical model is verified by comparison. Finally, the accuracy of the calculation method of the maximum number of bonded steel plates is proved by the numerical model.

Findings

The numerical simulation results show that when the steel plate width is 800 mm and the thickness is 1–4 mm, the reinforced concrete beam has a delayed yield platform when it reaches the limit state, and the failure mode conforms to the basic stress characteristics of the balanced-reinforced beam. When the steel plate thickness is 5–8 mm, the sudden failure occurs without obvious warning when the reinforced concrete beam reaches the limit state. The failure mode conforms to the basic mechanical characteristics of the super-reinforced beam failure, and the bending moment of the beam failure depends only on the compressive strength of the concrete. The results of the calculation and analysis show that the maximum number of bonded steel plates for reinforced concrete beams in this experiment is 3,487 mm2. When the width of the steel plate is 800 mm, the maximum thickness of the steel plate can be 4.36 mm. That is, when the thickness of the steel plate, the reinforced concrete beam is still the balanced-reinforced beam. When the thickness of the steel plate, the reinforced concrete beam will become a super-reinforced beam after reinforcement. The calculation results are in good agreement with the numerical simulation results, which proves the accuracy of the calculation method.

Originality/value

This paper presents a method for calculating the maximum number of steel plates attached to the bottom of reinforced concrete beams. First, based on the experimental research, the failure mode of reinforced concrete beams with different number of steel plates is simulated by the numerical model, and then the result of the calculation method is compared with the result of the numerical simulation to ensure the accuracy of the calculation method of the maximum number of bonded steel plates. And the study does not require a large number of experimental samples, which has a certain economy. The research result can be used to control the number of steel plates in similar reinforcement designs.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 7 February 2022

Muralidhar Vaman Kamath, Shrilaxmi Prashanth, Mithesh Kumar and Adithya Tantri

The compressive strength of concrete depends on many interdependent parameters; its exact prediction is not that simple because of complex processes involved in strength…

Abstract

Purpose

The compressive strength of concrete depends on many interdependent parameters; its exact prediction is not that simple because of complex processes involved in strength development. This study aims to predict the compressive strength of normal concrete and high-performance concrete using four datasets.

Design/methodology/approach

In this paper, five established individual Machine Learning (ML) regression models have been compared: Decision Regression Tree, Random Forest Regression, Lasso Regression, Ridge Regression and Multiple-Linear regression. Four datasets were studied, two of which are previous research datasets, and two datasets are from the sophisticated lab using five established individual ML regression models.

Findings

The five statistical indicators like coefficient of determination (R2), mean absolute error, root mean squared error, Nash–Sutcliffe efficiency and mean absolute percentage error have been used to compare the performance of the models. The models are further compared using statistical indicators with previous studies. Lastly, to understand the variable effect of the predictor, the sensitivity and parametric analysis were carried out to find the performance of the variable.

Originality/value

The findings of this paper will allow readers to understand the factors involved in identifying the machine learning models and concrete datasets. In so doing, we hope that this research advances the toolset needed to predict compressive strength.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 12 April 2024

Shivendra Singh Rathore and Chakradhara Rao Meesala

The purpose of this paper is to investigate the effect of the replacement of natural coarse aggregate (NCA) with different percentages of recycled coarse aggregate (RCA) on…

Abstract

Purpose

The purpose of this paper is to investigate the effect of the replacement of natural coarse aggregate (NCA) with different percentages of recycled coarse aggregate (RCA) on properties of low calcium fly ash (FA)-based geopolymer concrete (GPC) cured at oven temperature. Further, this paper aims to study the effect of partial replacement of FA by ground granulated blast slag (GGBS) in GPC made with both NCA and RCA cured under ambient temperature curing.

Design/methodology/approach

M25 grade of ordinary Portland cement (OPC) concrete was designed according to IS: 10262-2019 with 100% NCA as control concrete. Since no standard guidelines are available in the literature for GPC, the same mix proportion was adopted for the GPC by replacing the OPC with 100% FA and W/C ratio by alkalinity/binder ratio. All FA-based GPC mixes were prepared with 12 M of sodium hydroxide (NaOH) and an alkalinity ratio, i.e. sodium hydroxide to sodium silicate (NaOH:Na2SiO3) of 1:1.5, subjected to 90°C temperature for 48 h of curing. The NCA were replaced with 50% and 100% RCA in both OPC and GPC mixes. Further, FA was partially replaced with 15% GGBS in GPC made with the above percentages of NCA and RCA, and they were given ambient temperature curing with the same molarity of NaOH and alkalinity ratio.

Findings

The workability, compressive strength, split tensile strength, flexural strength, water absorption, density, volume of voids and rebound hammer value of all the mixes were studied. Further, the relationship between compressive strength and other mechanical properties of GPC mixes were established and compared with the well-established relationships available for conventional concrete. From the experimental results, it is found that the compressive strength of GPC under ambient curing condition at 28 days with 100% NCA, 50% RCA and 100% RCA were, respectively, 14.8%, 12.85% and 17.76% higher than those of OPC concrete. Further, it is found that 85% FA and 15% GGBS-based GPC with RCA under ambient curing shown superior performance than OPC concrete and FA-based GPC cured under oven curing.

Research limitations/implications

The scope of the present paper is limited to replace the FA by 15% GGBS. Further, only 50% and 100% RCA are used in place of natural aggregate. However, in future study, the replacement of FA by different amounts of GGBS (20%, 25%, 30% and 35%) may be tried to decide the optimum utilisation of GGBS so that the applications of GPC can be widely used in cast in situ applications, i.e. under ambient curing condition. Further, in the present study, the natural aggregate is replaced with only 50% and 100% RCA in GPC. However, further investigations may be carried out by considering different percentages between 50 and 100 with the optimum compositions of FA and GGBS to enhance the use of RCA in GPC applications. The present study is further limited to only the mechanical properties and a few other properties of GPC. For wider use of GPC under ambient curing conditions, the structural performance of GPC needs to be understood. Therefore, the structural performance of GPC subjected to different loadings under ambient curing with RCA to be investigated in future study.

Originality/value

The replacement percentage of natural aggregate by RCA may be further enhanced to 50% in GPC under ambient curing condition without compromising on the mechanical properties of concrete. This may be a good alternative for OPC and natural aggregate to reduce pollution and leads sustainability in the construction.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 December 2021

Amit Deb Nath, Md. Ikramul Hoque, Shuvo Dip Datta and Fahim Shahriar

The current study mainly focuses on the effect of varying diameter recycled steel fibers (RSF) on mechanical properties of concrete prepared with 25 and 50% of recycled coarse…

Abstract

Purpose

The current study mainly focuses on the effect of varying diameter recycled steel fibers (RSF) on mechanical properties of concrete prepared with 25 and 50% of recycled coarse aggregate (RCA) as well as 100% natural aggregate (NA). Two types of RSF with 0.84 mm and 1.24 mm diameter having 30 mm length were incorporated into normal and recycled aggregate concrete (RAC).

Design/methodology/approach

The fresh behavior, compressive, splitting tensile, flexural strengths and modulus of elasticity of all the mixes were investigated to evaluate the mechanical properties of RACs. In addition, specimen crack and testing co-relation were analyzed to evaluate fiber response in the RAC.

Findings

According to the experimental results, it was observed that mechanical properties decreased with the increment replacement of NA by RCA. However, the RSF greatly improves the mechanical properties of both normal concrete and RACs. Moreover, mixes containing 1.24 mm diameter RSF had a more significant positive impact on mechanical properties than mixes containing 0.84 mm diameter RSF. The 0.84 mm and 1.24 mm RSF addition improved the mixes' compressive, splitting tensile and flexural strength by 10%–19%, 19%–30% and 3%–11%, respectively when compared to the null fiber mix. Therefore, based on the mechanical properties, the 1.24 mm diameter of RSF with 25% replacement of RCA was obtained as an optimum solution in terms of performance improvement, environmental benefit and economic cost.

Practical implications

The practice of RCA in construction is a long-term strategy for reducing natural resource extraction and the negative ecological impact of waste concrete.

Originality/value

This is the first study on the effects of varying size (0.84 mm and 1.24 mm diameter) RSF on the mechanical properties of RAC. Additionally, varying sizes of RSF and silica fume added a new dimension to the RAC.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

1 – 10 of 79