Search results

1 – 10 of 22
Open Access
Article
Publication date: 6 March 2024

Chuloh Jung, Muhammad Azzam Ismail, Mohammad Arar and Nahla AlQassimi

This study aims to evaluate the efficiency of various techniques for enhancing indoor air quality (IAQ) in construction. It analyzed the alterations in the concentration of indoor…

Abstract

Purpose

This study aims to evaluate the efficiency of various techniques for enhancing indoor air quality (IAQ) in construction. It analyzed the alterations in the concentration of indoor air pollutants over time for each product employed in controlling pollution sources and removing it, which included eco-friendly substances and adsorbents. The study will provide more precise and dependable data on the effectiveness of these control methods, ultimately supporting the creation of more efficient and sustainable approaches for managing indoor air pollution in buildings.

Design/methodology/approach

The research investigates the impact of eco-friendly materials and adsorbents on improving indoor air quality (IAQ) in Dubai's tall apartment buildings. Field experiments were conducted in six units of The Gate Tower, comparing the IAQ of three units built with “excellent” grade eco-friendly materials with three built with “good” grade materials. Another experiment evaluated two adsorbent products (H and Z) in the Majestic Tower over six months. Results indicate that “excellent” grade materials significantly reduced toluene emissions. Adsorbent product Z showed promising results in pollutant reduction, but there is concern about the long-term behavior of adsorbed chemicals. The study emphasizes further research on household pollutant management.

Findings

The research studied the effects of eco-friendly materials and adsorbents on indoor air quality in Dubai's new apartments. It found that apartments using “excellent” eco-friendly materials had significantly better air quality, particularly reduced toluene concentrations, compared to those using “good” materials. However, high formaldehyde (HCHO) emissions were observed from wood products. While certain construction materials led to increased ethylbenzene and xylene levels, adsorbent product Z showed promise in reducing pollutants. Yet, there is a potential concern about the long-term rerelease of these trapped chemicals. The study emphasizes the need for ongoing research in indoor pollutant management.

Research limitations/implications

The research, while extensive, faced limitations in assessing the long-term behavior of adsorbed chemicals, particularly the potential for rereleasing trapped pollutants over time. Despite the study spanning a considerable period, indoor air pollutant concentrations in target households did not stabilize, making it challenging to determine definitive improvement effects and reduction rates among products. Comparisons were primarily relative between target units, and the rapid rise in pollutants during furniture introduction warrants further examination. Consequently, while the research provides essential insights, it underscores the need for more prolonged and comprehensive evaluations to fully understand the materials' and adsorbents' impacts on indoor air quality.

Practical implications

The research underscores the importance of choosing eco-friendly materials in new apartment constructions for better IAQ. Specifically, using “excellent” graded materials can significantly reduce harmful pollutants like toluene. However, the study also highlights that certain construction activities, such as introducing furniture, can rapidly elevate pollutant levels. Moreover, while adsorbents like product Z showed promise in reducing pollutants, there is potential for adsorbed chemicals to be rereleased over time. For practical implementation, prioritizing higher-grade eco-friendly materials and further investigation into furniture emissions and long-term behavior of adsorbents can lead to healthier indoor environments in newly built apartments.

Originality/value

The research offers a unique empirical assessment of eco-friendly materials' impact on indoor air quality within Dubai's rapidly constructed apartment buildings. Through field experiments, it directly compares different material grades, providing concrete data on pollutant levels in newly built environments. Additionally, it explores the efficacy of specific adsorbents, which is of high value to the construction and public health sectors. The findings shed light on how construction choices can influence indoor air pollution, offering valuable insights to builders, policymakers and residents aiming to promote public health and safety in urban living spaces.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 1 March 2024

Khaled Mostafa and Azza El-Sanabary

The novelty addressed here is undertaken by using tailor-made and fully characterized starch nanoparticles (SNPs) having a particle size ranging from 80 to 100 nm with a larger…

Abstract

Purpose

The novelty addressed here is undertaken by using tailor-made and fully characterized starch nanoparticles (SNPs) having a particle size ranging from 80 to 100 nm with a larger surface area, biodegradability and high reactivity as a starting substrate for cadmium ions and basic dye removal from wastewater effluent. This was done via carboxylation of SNPs with citric acid via esterification reaction using the dry preparation technique, in which a simple, energy-safe and sustainable process concerning a small amount of water, energy and toxic chemicals was used. The obtained adsorbent is designated as cross-linked esterified starch nanoparticles (CESNPs).

Design/methodology/approach

The batch technique was used to determine the CESNPs adsorption capacity, whereas atomic adsorption spectrometry was used to determine the residual cadmium ions concentration in the filtrate before and after adsorption. Different factors affecting adsorption were examined concerning pH, contact time, adsorbent dose and degree of carboxylation. Besides, to validate the esterification reaction and existence of carboxylic groups in the adsorbent, CESNPs were characterized metrologically via analytical tools for carboxyl content estimation and instrumental tools using Fourier-transform infrared spectroscopy (FTIR) spectra and scanning electron microscopy (SEM) morphological analysis.

Findings

The overall adsorption potential of CESNPs was found to be 136 mg/g when a 0.1 g adsorbent dose having 190.8 meq/100 g sample carboxyl content at pH 5 for 60 min contact time was used. Besides, increasing the degree of carboxylation of the CESNPs expressed as carboxyl content would lead to the higher adsorption capacity of cadmium ions. FTIR spectroscopy analysis elucidates the esterification reaction with the appearance of a new intense peak C=O ester at 1,700 cm−1, whereas SEM observations reveal some atomic/molecules disorder after esterification.

Originality/value

The innovation addressed here is undertaken by studying the consequence of altering the extent of carboxylation reaction expressed as carboxyl contents on the prepared CESNPs via a simple dry technique with a small amount of water, energy and toxic chemicals that were used as a sustainable bio nano polymer for cadmium ions and basic dye removal from wastewater effluent in comparison with other counterparts published in the literature.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Book part
Publication date: 18 January 2024

Ackmez Mudhoo, Gaurav Sharma, Khim Hoong Chu and Mika Sillanpää

Adsorption parameters (e.g. Langmuir constant, mass transfer coefficient and Thomas rate constant) are involved in the design of aqueous-media adsorption treatment units. However…

Abstract

Adsorption parameters (e.g. Langmuir constant, mass transfer coefficient and Thomas rate constant) are involved in the design of aqueous-media adsorption treatment units. However, the classic approach to estimating such parameters is perceived to be imprecise. Herein, the essential features and performances of the ant colony, bee colony and elephant herd optimisation approaches are introduced to the experimental chemist and chemical engineer engaged in adsorption research for aqueous systems. Key research and development directions, believed to harness these algorithms for real-scale water treatment (which falls within the wide-ranging coverage of the Sustainable Development Goal 6 (SDG 6) ‘Clean Water and Sanitation for All’), are also proposed. The ant colony, bee colony and elephant herd optimisations have higher precision and accuracy, and are particularly efficient in finding the global optimum solution. It is hoped that the discussions can stimulate both the experimental chemist and chemical engineer to delineate the progress achieved so far and collaborate further to devise strategies for integrating these intelligent optimisations in the design and operation of real multicomponent multi-complexity adsorption systems for water purification.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Article
Publication date: 24 April 2024

Ali Hassanzadeh, Ebrahim Ghorbani-Kalhor, Khalil Farhadi and Jafar Abolhasani

This study’s aim is to introduce a high-performance sorbent for the removal of both anionic (Congo red; CR) and cationic (methylene blue; MB) dyes from aqueous solutions.

Abstract

Purpose

This study’s aim is to introduce a high-performance sorbent for the removal of both anionic (Congo red; CR) and cationic (methylene blue; MB) dyes from aqueous solutions.

Design/methodology/approach

Sodium silicate is adopted as a substrate for GO and AgNPs with positive charge are used as modifiers. The synthesized nanocomposite is characterized by FTIR, FESEM, EDS, BET and XRD techniques. Then, some of the most effective parameters on the removal of CR and MB dyes such as solution pH, sorbent dose, adsorption equilibrium time, primary dye concentration and salt effect are optimized using the spectrophotometry technique.

Findings

The authors successfully achieved notable maximum adsorption capacities (Qmax) of CR and MB, which were 41.15 and 37.04 mg g−1, respectively. The required equilibrium times for maximum efficiency of the developed sorbent were 10 and 15 min for CR and MB dyes, respectively. Adsorption equilibrium data present a good correlation with Langmuir isotherm, with a correlation coefficient of R2 = 0.9924 for CR and R2 = 0.9904 for MB, and kinetic studies prove that the dye adsorption process follows pseudo second-order models (CR R2 = 0.9986 and MB R2 = 0.9967).

Practical implications

The results showed that the proposed mechanism for the function of the developed sorbent in dye adsorption was based on physical and multilayer adsorption for both dyes onto the active sites of non-homogeneous sorbent.

Originality/value

The as-prepared nano-adsorbent has a high ability to remove both cationic and anionic dyes; moreover, to the high efficiency of the adsorbent, it has been tried to make its synthesis steps as simple as possible using inexpensive and available materials.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 25 March 2024

Fatemeh Mollaamin and Majid Monajjemi

This study aims to investigate the potential of the decorated boron nitride nanocage (BNNc) with transition metals for capturing carbon monoxide (CO) as a toxic gas in the air.

Abstract

Purpose

This study aims to investigate the potential of the decorated boron nitride nanocage (BNNc) with transition metals for capturing carbon monoxide (CO) as a toxic gas in the air.

Design/methodology/approach

BNNc was modeled in the presence of doping atoms of titanium (Ti), vanadium (V), chromium (Cr), cobalt (Co), copper (Cu) and zinc (Zn) which can increase the gas sensing ability of BNNc. In this research, the calculations have been accomplished by CAM–B3LYP–D3/EPR–3, LANL2DZ level of theory. The trapping of CO molecules by (Ti, V, Cr, Co, Cu, Zn)–BNNc has been successfully incorporated because of binding formation consisting of C → Ti, C → V, C → Cr, C → Co, C → Cu, C → Zn.

Findings

Nuclear quadrupole resonance data has indicated that Cu-doped or Co-doped on pristine BNNc has high fluctuations between Bader charge versus electric potential, which can be appropriate options with the highest tendency for electron accepting in the gas adsorption process. Furthermore, nuclear magnetic resonance spectroscopy has explored that the yield of electron accepting for doping atoms on the (Ti, V, Cr, Co, Cu, Zn)–BNNc in CO molecules adsorption can be ordered as follows: Cu > Co >> Cr > Zn ˜ V> Ti that exhibits the strength of the covalent bond between Ti, V, Cr, Co, Cu, Zn and CO. In fact, the adsorption of CO gas molecules can introduce spin polarization on the (Ti, V, Cr, Co, Cu, Zn)–BNNc which specifies that these surfaces may be used as magnetic-scavenging surface as a gas detector. Gibbs free energy based on IR spectroscopy for adsorption of CO molecules adsorption on the (Ti, V, Cr, Co, Cu, Zn)–BNNc have exhibited that for a given number of carbon donor sites in CO, the stabilities of complexes owing to doping atoms of Ti, V, Cr, Co, Cu, Zn can be considered as: CO →Cu–BNNc >> CO → Co–BNNc > CO → Cr–BNNc > CO → V–BNNc > CO → Zn–BNNc > CO → Ti–BNNc.

Originality/value

This study by using materials modeling approaches and decorating of nanomaterials with transition metals is supposed to introduce new efficient nanosensors in applications for selective sensing of carbon monoxide.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 11 January 2024

Adewale Allen Sokan-Adeaga, Godson R.E.E. Ana, Abel Olajide Olorunnisola, Micheal Ayodeji Sokan-Adeaga, Hridoy Roy, Md Sumon Reza and Md. Shahinoor Islam

This study aims to assess the effect of water variation on bioethanol production from cassava peels (CP) using Saccharomyces cerevisiae yeast as the ethanologenic agent.

Abstract

Purpose

This study aims to assess the effect of water variation on bioethanol production from cassava peels (CP) using Saccharomyces cerevisiae yeast as the ethanologenic agent.

Design/methodology/approach

The milled CP was divided into three treatment groups in a small-scale flask experiment where each 20 g CP was subjected to two-stage hydrolysis. Different amount of water was added to the fermentation process of CP. The fermented samples were collected every 24 h for various analyses.

Findings

The results of the fermentation revealed that the highest ethanol productivity and fermentation efficiency was obtained at 17.38 ± 0.30% and 0.139 ± 0.003 gL−1 h−1. The study affirmed that ethanol production was increased for the addition of water up to 35% for the CP hydrolysate process.

Practical implications

The finding of this study demonstrates that S. cerevisiae is the key player in industrial ethanol production among a variety of yeasts that produce ethanol through sugar fermentation. In order to design truly sustainable processes, it should be expanded to include a thorough analysis and the gradual scaling-up of this process to an industrial level.

Originality/value

This paper is an original research work dealing with bioethanol production from CP using S. cerevisiae microbe.

Highlights

  1. Hydrolysis of cassava peels using 13.1 M H2SO4 at 100 oC for 110 min gave high Glucose productivity

  2. Highest ethanol production was obtained at 72 h of fermentation using Saccharomyces cerevisiae

  3. Optimal bioethanol concentration and yield were obtained at a hydration level of 35% agitation

  4. Highest ethanol productivity and fermentation efficiency were 17.3%, 0.139 g.L−1.h−1

Hydrolysis of cassava peels using 13.1 M H2SO4 at 100 oC for 110 min gave high Glucose productivity

Highest ethanol production was obtained at 72 h of fermentation using Saccharomyces cerevisiae

Optimal bioethanol concentration and yield were obtained at a hydration level of 35% agitation

Highest ethanol productivity and fermentation efficiency were 17.3%, 0.139 g.L−1.h−1

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 21 December 2022

Liliya Frolova and Olga Sergeyeva

This paper aims to develop a simple and efficient plasma technology for the production of copper (I) oxide with the ability to control the morphology and size of Cu2O particles…

Abstract

Purpose

This paper aims to develop a simple and efficient plasma technology for the production of copper (I) oxide with the ability to control the morphology and size of Cu2O particles. To achieve this goal, the phase composition of the precipitate formed was estimated, the composition and size of the obtained particles were determined and Pourbaix diagrams were constructed.

Design/methodology/approach

An integrated approach combining thermodynamic calculations and experimental research methods is used. The constructed Pourbaix diagram makes it possible to suggest the phase composition of the sediment. The use of cyclic voltammetry made it possible to establish the mechanism of deposit formation on the cathode during the treatment of the solution with contact nonequilibrium low-temperature plasma. The resulting product was examined using X-ray phase analysis and scanning electron microscopy.

Findings

The article presents the results of theoretical and experimental studies on the synthesis of copper (II) oxide. The influence of the parameters of plasma-chemical synthesis on the shape and phase composition of the deposits formed has been studied.

Originality/value

A plasma-chemical technology for obtaining copper oxide in the form of single crystals of a regular faceted shape is proposed. The mechanism of formation of copper oxide has been established by cyclic voltammetry. The constructed Pourbaix diagrams show the area of existence of the product.

Details

Pigment & Resin Technology, vol. 53 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 July 2022

Pooneh Kardar and Reza Amini

The purpose of this work was to study the effect of different wood surface preparations on the wetting and adhesion of coating.

Abstract

Purpose

The purpose of this work was to study the effect of different wood surface preparations on the wetting and adhesion of coating.

Design/methodology/approach

In this research, six different chemical preparations to evaluate the photostability and properties of wood coating. Also, the effect of the same wood treatments on the properties of the coating, i.e. wetting, adhesion and the permeability of two types of coatings, was investigated.

Findings

As a result, benzoyl chloride and chromic acid were found to be the most effective photostabilizing preparations. Solvent-based polyurethane was more compatible with the prepared wood surfaces compared with water-based alkyd coatings.

Research limitations/implications

Chemical modifications of wood surfaces affected the wetting of various coatings.

Practical implications

Various surface properties could be changed using preparation that affects important coating properties.

Social implications

Unfortunately, the properties of transparent wood coatings used outdoors disappear through the early years of use, essentially due to the wood substrate’s photodegradation.

Originality/value

Wood is a widespread substrate because of its comfortable handling, availability, proper cost of preparation and its good mechanical strength because of its density. Architects and designers tend to use wood in the construction of green buildings. However, this material is disposed to weathering while using outdoors and it should be solved.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 21 May 2024

Kesavan Devarayan, Yazhiniyan Palanisamy, Gangeswar Mohan, Anand Theivasigamani, Sabariswaran Kandasamy, Vimaladevi Sekar, Evon Umesh Siluvai John, Monikandon Sukumaran, Ramar Marimuthu and Hema Anjappan

This study aims to develop a pH-functional thin-film sensor for non-invasive measurement of spoilage of packed fish.

Abstract

Purpose

This study aims to develop a pH-functional thin-film sensor for non-invasive measurement of spoilage of packed fish.

Design/methodology/approach

At first, polymers of natural origin such as hydroxy(propyl)methyl cellulose, potato dextrose agar and starch alongside a pH sensitive-mixed indicator formulation were used to produce thin film sensor. The developed thin film sensor was tested for monitoring the spoilage of seafood stored at 4°C. Using ultraviolet-visible and Fourier-transform infrared spectroscopy, the halochromic sensor was characterised. In addition, the halochromic response of the thin film was directly correlated to the total volatile base nitrogen emitted by the packaged fish, pH, microbial activity and sensory evaluation.

Findings

The results suggested the developed biopolymer-based thin film sensor showed different colours in line with the spoilage of the packed fish, which could be well correlated with the total volatile base nitrogen, microbial activity and sensory evaluation. In addition, the thin film sensors exhibited a high degree of biodegradability. The biopolymers-based thin film halochromic sensor has exhibited excellent biodegradability along with sensitiveness towards the spoilage of the packed fish.

Originality/value

In the future, consumers and retailers may prefer seafood containers equipped with such halochromic sensors to determine the degree of food deterioration as a direct indicator of food quality.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 April 2024

Anam Ul Haq Ganie and Masroor Ahmad

The purpose of this study is to assess the influence of institutional quality (IQ), fossil fuel efficiency, structural change and renewable energy (RE) consumption on carbon…

Abstract

Purpose

The purpose of this study is to assess the influence of institutional quality (IQ), fossil fuel efficiency, structural change and renewable energy (RE) consumption on carbon efficiency.

Design/methodology/approach

This research uses an econometric approach, more specifically the Autoregressive Distributed Lag model, to examine the relationship between structural change, RE consumption, IQ, fossil fuel efficiency and carbon efficiency in India from 1996 to 2019.

Findings

This study finds the positive contributions of variables like fossil fuel efficiency, technological advancement, structural transformation, IQ and increased RE consumption in fostering environmental development through enhanced carbon efficiency. Conversely, this study emphasises the negative contribution of trade openness on carbon efficiency. These findings provide concise insights into the dynamics of factors impacting carbon efficiency in India.

Research limitations/implications

This study's exclusive focus on India limits the generalizability of findings. Future studies should include a broader range of variables impacting various nations' carbon efficiency. Furthermore, it is worth noting that this study examines renewable and fossil fuel efficiency aggregated. Future research endeavours could yield more specific policy insights by conducting analyses at a disaggregated level, considering individual energy sources such as wind, solar, coal and oil. Understanding how the efficiency of each energy source influences carbon efficiency could lead to more targeted and practical policy recommendations.

Originality/value

To the best of the authors’ knowledge, this study addresses a significant gap in the existing literature by being the first empirical investigation into the effects of IQ, fossil fuel efficiency, structural change and RE consumption on carbon efficiency. Unlike prior research, the authors consider a comprehensive IQ index, providing a more holistic perspective. The use of a comprehensive composite index for IQ, coupled with the focus on fossil fuel efficiency and structural change, distinguishes this study from previous research, contributing valuable insights into the intricate dynamics shaping India's path towards enhanced carbon efficiency, an area relatively underexplored in the existing literature.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

1 – 10 of 22