Search results

1 – 10 of over 40000
Article
Publication date: 8 February 2016

Jun Sun, Lei Shu, Xianhao Song, Guangsheng Liu, Feng Xu, Enming Miao, Zhihao Xu, Zheng Zhang and Junwei Zhao

This paper aims to use the crankshaft-bearing system of a four-cylinder internal combustion engine as the studying object, and develop a multi-objective optimization design of the…

Abstract

Purpose

This paper aims to use the crankshaft-bearing system of a four-cylinder internal combustion engine as the studying object, and develop a multi-objective optimization design of the crankshaft-bearing. In the current optimization design of engine crankshaft-bearing, only the crankshaft-bearing was considered as the studying object. However, the corresponding relations of major structure dimensions exist between the crankshaft and the crankshaft-bearing in internal combustion engine, and there are the interaction effects between the crankshaft and the crankshaft-bearing during the operation of internal combustion engine.

Design/methodology/approach

The crankshaft mass and the total frictional power loss of crankshaft-bearing s are selected as the objective functions in the optimization design of crankshaft-bearing. The Particle Swarm Optimization algorithm based on the idea of decreasing strategy of inertia weight with the exponential type is used in the optimization calculation.

Findings

The total frictional power loss of crankshaft-bearing and the crankshaft mass are decreased, respectively, by 26.2 and 5.3 per cent by the multi-objective optimization design of crankshaft-bearing, which are more reasonable than the ones of single-objective optimization design in which only the crankshaft-bearing is considered as the studying object.

Originality/value

The crankshaft-bearing system of a four-cylinder internal combustion engine is taken as the studying object, and the multi-objective optimization design of crankshaft-bearing based on the crankshaft-bearing system is developed. The results of this paper are helpful to the design of the crankshaft-bearing for engine. There is universal significance to research the multi-objective optimization design of crankshaft-bearing based on the crankshaft-bearing system. The research method of the multi-objective optimization design of crankshaft-bearing based on the crankshaft-bearing system can be used to the optimization design of the bearing in the shaft-bearing system of ordinary machinery.

Article
Publication date: 2 March 2022

Yuki Hidaka

The purpose of this paper is to develop a multi-material topology optimization method for permanent magnet-assisted synchronous reluctance motors.

Abstract

Purpose

The purpose of this paper is to develop a multi-material topology optimization method for permanent magnet-assisted synchronous reluctance motors.

Design/methodology/approach

In the proposed method, the optimization procedure consists of two steps. In the first step, the entire rotor area was selected for the design region and the distribution of the core and air materials was optimized. In the second step, the design region was limited to the air region of the former solution and the distribution of magnets and cores or magnets and air was optimized.

Findings

Because of the two-step process of the proposed method, the design parameters can be reduced compared to the conventional method. As a result, this study can prevent the solution space from becoming more complex and superior solutions can be founded effectively.

Research limitations/implications

Since limited case study is denoted in this paper, much more case studies, for example, three-dimensional optimization problems, are needed to be discussed.

Practical implications

The optimal solutions obtained by the proposed method have a smaller magnet volume and higher average torque than that of the conventional method.

Originality/value

In the proposed methods, optimization methodology, which consists of two-steps process, is differed from the conventional method.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 November 2021

Hayaho Sato and Hajime Igarashi

This paper aims to present a deep learning–based surrogate model for fast multi-material topology optimization of an interior permanent magnet (IPM) motor. The multi-material…

Abstract

Purpose

This paper aims to present a deep learning–based surrogate model for fast multi-material topology optimization of an interior permanent magnet (IPM) motor. The multi-material topology optimization based on genetic algorithm needs large computational burden because of execution of finite element (FE) analysis for many times. To overcome this difficulty, a convolutional neural network (CNN) is adopted to predict the motor performance from the cross-sectional motor image and reduce the number of FE analysis.

Design/methodology/approach

To predict the average torque of an IPM motor, CNN is used as a surrogate model. From the input cross-sectional motor image, CNN infers dq-inductance and magnet flux to compute the average torque. It is shown that the average torque for any current phase angle can be predicted by this approach, which allows the maximization of the average torque by changing the current phase angle. The individuals in the multi-material topology optimization are evaluated by the trained CNN, and the limited individuals with higher potentials are evaluated by finite element method.

Findings

It is shown that the proposed method doubles the computing speed of the multi-material topology optimization without loss of search ability. In addition, the optimized motor obtained by the proposed method followed by simplification for manufacturing is shown to have higher average torque than a reference model.

Originality/value

This paper proposes a novel method based on deep learning for fast multi-material topology optimization considering the current phase angle.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 March 1997

Chongbin Zhao, G.P. Steven and Y.M. Xie

Extends the evolutionary structural optimization method to the solution for the natural frequency optimization of a two‐dimensional structure with additional non‐structural lumped…

Abstract

Extends the evolutionary structural optimization method to the solution for the natural frequency optimization of a two‐dimensional structure with additional non‐structural lumped masses. Owing to the significant difference between a static optimization problem and a structural natural frequency optimization problem, five basic criteria for the evolutionary natural frequency optimization have been established. The inclusion of these criteria into the evolutionary structural optimization method makes it possible to solve structural natural frequency optimization problems for two‐dimensional structures with additional non‐structural lumped masses. Gives two examples to demonstrate the feasibility of the extended evolutionary structural optimization method when it is used to solve structural natural frequency optimization problems.

Details

Engineering Computations, vol. 14 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 July 2017

Jacek Mieloszyk

The paper aims to apply numerical optimization to the aircraft design procedures applied in the airspace industry.

Abstract

Purpose

The paper aims to apply numerical optimization to the aircraft design procedures applied in the airspace industry.

Design/methodology/approach

It is harder than ever to achieve competitive construction. This is why numerical optimization is becoming a standard tool during the design process. Although optimization procedures are becoming more mature, yet in the industry practice, fairly simple examples of optimization are present. The more complicated is the task to solve, the harder it is to implement automated optimization procedures. This paper presents practical examples of optimization in aerospace sciences. The methodology is discussed in the article in great detail.

Findings

Encountered problems related to the numerical optimization are presented. Different approaches to the solutions of the problems are shown, which have impact on the time of optimization computations and quality of the obtained optimum. Achieved results are discussed in detail with relation to the used settings.

Practical implications

Investigated different aspects of handling optimization problems, improving quality of the obtained optimum or speeding-up optimization by parallel computations can be directly applied in the industry optimization practice. Lessons learned from multidisciplinary optimization can bring industry products to higher level of performance and quality, i.e. more advanced, competitive and efficient aircraft design procedures, which could be applied in the industry practice. This can lead to the new approach of aircraft design process.

Originality/value

Introduction of numerical optimization methods in aircraft design process. Showing how to solve numerical optimization problems related to advanced cases of conceptual and preliminary aircraft design.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Book part
Publication date: 1 November 2007

Irina Farquhar and Alan Sorkin

This study proposes targeted modernization of the Department of Defense (DoD's) Joint Forces Ammunition Logistics information system by implementing the optimized innovative…

Abstract

This study proposes targeted modernization of the Department of Defense (DoD's) Joint Forces Ammunition Logistics information system by implementing the optimized innovative information technology open architecture design and integrating Radio Frequency Identification Device data technologies and real-time optimization and control mechanisms as the critical technology components of the solution. The innovative information technology, which pursues the focused logistics, will be deployed in 36 months at the estimated cost of $568 million in constant dollars. We estimate that the Systems, Applications, Products (SAP)-based enterprise integration solution that the Army currently pursues will cost another $1.5 billion through the year 2014; however, it is unlikely to deliver the intended technical capabilities.

Details

The Value of Innovation: Impact on Health, Life Quality, Safety, and Regulatory Research
Type: Book
ISBN: 978-1-84950-551-2

Article
Publication date: 29 December 2023

Noah Ray and Il Yong Kim

Fiber reinforced additive manufacturing (FRAM) is an emerging technology that combines additive manufacturing and composite materials. As a result, design freedom offered by the…

Abstract

Purpose

Fiber reinforced additive manufacturing (FRAM) is an emerging technology that combines additive manufacturing and composite materials. As a result, design freedom offered by the manufacturing process can be leveraged in design optimization. The purpose of the study is to propose a novel method that improves structural performance by optimizing 3D print orientation of FRAM components.

Design/methodology/approach

This work proposes a two-part design optimization method that optimizes 3D global print orientation and topology of a component to improve a structural objective function. The method considers two classes of design variables: (1) print orientation design variables and (2) density-based topology design variables. Print orientation design variables determine a unique 3D print orientation to influence anisotropic material properties. Topology optimization determines an optimal distribution of material within the optimized print orientation.

Findings

Two academic examples are used to demonstrate basic behavior of the method in tension and shear. Print orientation and sequential topology optimization improve structural compliance by 90% and 58%, respectively. An industry-level example, an aerospace component, is optimized. The proposed method is used to achieve an 11% and 15% reduction of structural compliance compared to alternative FRAM designs. In addition, compliance is reduced by 43% compared to an equal-mass aluminum design.

Originality/value

Current research surrounding FRAM focuses on the manufacturing process and neglects opportunities to leverage design freedom provided by FRAM. Previous FRAM optimization methods only optimize fiber orientation within a 2D plane and do not establish an optimized 3D print orientation, neglecting exploration of the entire orientation design space.

Book part
Publication date: 6 November 2013

Bartosz Sawik

This chapter presents the survey of selected linear and mixed integer programming multi-objective portfolio optimization. The definitions of selected percentile risk measures are…

Abstract

This chapter presents the survey of selected linear and mixed integer programming multi-objective portfolio optimization. The definitions of selected percentile risk measures are presented. Some contrasts and similarities of the different types of portfolio formulations are drawn out. The survey of multi-criteria methods devoted to portfolio optimization such as weighting approach, lexicographic approach, and reference point method is also presented. This survey presents the nature of the multi-objective portfolio problems focuses on a compromise between the construction of objectives, constraints, and decision variables in a portfolio and the problem complexity of the implemented mathematical models. There is always a trade-off between computational time and the size of an input data, as well as the type of mathematical programming formulation with linear and/or mixed integer variables.

Article
Publication date: 12 December 2023

Niveen Badra, Hosam Hegazy, Mohamed Mousa, Jiansong Zhang, Sharifah Akmam Syed Zakaria, Said Aboul Haggag and Ibrahim Abdul-Rashied

This research aims to create a methodology that integrates optimization techniques into preliminary cost estimates and predicts the impacts of design alternatives of steel…

Abstract

Purpose

This research aims to create a methodology that integrates optimization techniques into preliminary cost estimates and predicts the impacts of design alternatives of steel pedestrian bridges (SPBs). The cost estimation process uses two main parameters, but the main goal is to create a cost estimation model.

Design/methodology/approach

This study explores a flexible model design that uses computing capabilities for decision-making. Using cost optimization techniques, the model can select an optimal pedestrian bridge system based on multiple criteria that may change independently. This research focuses on four types of SPB systems prevalent in Egypt and worldwide. The study also suggests developing a computerized cost and weight optimization model that enables decision-makers to select the optimal system for SPBs in keeping up with the criteria established for that system.

Findings

In this paper, the authors developed an optimization model for cost estimates of SPBs. The model considers two main parameters: weight and cost. The main contribution of this study based on a parametric study is to propose an approach that enables structural engineers and designers to select the optimum system for SPBs.

Practical implications

The implications of this research from a practical perspective are that the study outlines a feasible approach to develop a computerized model that utilizes the capabilities of computing for quick cost optimization that enables decision-makers to select the optimal system for four common SPBs based on multiple criteria that may change independently and in concert with cost optimization during the preliminary design stage.

Social implications

The model can choose an optimal system for SPBs based on multiple criteria that may change independently and in concert with cost optimization. The resulting optimization model can forecast the optimum cost of the SPBs for different structural spans and road spans based on local unit costs of materials cost of steel structures, fabrication, erection and painting works.

Originality/value

The authors developed a computerized model that uses spreadsheet software's capabilities for cost optimization, enabling decision-makers to select the optimal system for SPBs meeting the criteria established for such a system. Based on structural characteristics and material unit costs, this study shows that using the optimization model for estimating the total direct cost of SPB systems, the project cost can be accurately predicted based on the conceptual design status, and positive prediction outcomes are achieved.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Book part
Publication date: 5 October 2018

Nima Gerami Seresht, Rodolfo Lourenzutti, Ahmad Salah and Aminah Robinson Fayek

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and…

Abstract

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and relies on the analysis of uncertain, imprecise and incomplete information, including subjective and linguistically expressed information. Various modelling and computing techniques have been used by construction researchers and applied to practical construction problems in order to overcome these challenges, including fuzzy hybrid techniques. Fuzzy hybrid techniques combine the human-like reasoning capabilities of fuzzy logic with the capabilities of other techniques, such as optimization, machine learning, multi-criteria decision-making (MCDM) and simulation, to capitalise on their strengths and overcome their limitations. Based on a review of construction literature, this chapter identifies the most common types of fuzzy hybrid techniques applied to construction problems and reviews selected papers in each category of fuzzy hybrid technique to illustrate their capabilities for addressing construction challenges. Finally, this chapter discusses areas for future development of fuzzy hybrid techniques that will increase their capabilities for solving construction-related problems. The contributions of this chapter are threefold: (1) the limitations of some standard techniques for solving construction problems are discussed, as are the ways that fuzzy methods have been hybridized with these techniques in order to address their limitations; (2) a review of existing applications of fuzzy hybrid techniques in construction is provided in order to illustrate the capabilities of these techniques for solving a variety of construction problems and (3) potential improvements in each category of fuzzy hybrid technique in construction are provided, as areas for future research.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

1 – 10 of over 40000