Search results

1 – 9 of 9
Article
Publication date: 7 September 2023

Dileep Bonthu, Bharath H.S., Siddappa I. Bekinal, P. Jeyaraj and Mrityunjay Doddamani

The purpose of this study was to introduce three-dimensional printing (3DP) of functionally graded sandwich foams (FGSFs). This work was continued by predicting the mechanical…

Abstract

Purpose

The purpose of this study was to introduce three-dimensional printing (3DP) of functionally graded sandwich foams (FGSFs). This work was continued by predicting the mechanical buckling and free vibration behavior of 3DP FGSFs using experimental and numerical analyses.

Design/methodology/approach

Initially, hollow glass microballoon-reinforced high-density polyethylene-based polymer composite foams were developed, and these materials were extruded into their respective filaments. These filaments are used as feedstock materials in fused filament fabrication based 3DP for the development of FGSFs. Scanning electron microscopy analysis was performed on the freeze-dried samples to observe filler sustainability. Furthermore, the density, critical buckling load (Pcr), natural frequency (fn) and damping factor of FGSFs were evaluated. The critical buckling load (Pcr) of the FGSFs was estimated using the double-tangent method and modified Budiansky criteria.

Findings

The density of FGSFs decreased with increasing filler percentage. The mechanical buckling load increased with the filler percentage. The natural frequency corresponding to the first mode of the FGSFs exhibited a decreasing trend with an increasing load in the pre-buckling regime and an increase in post-buckled zone, whereas the damping factor exhibited the opposite trend.

Originality/value

The current research work is valuable for the area of 3D printing by developing the functionally graded foam based sandwich beams. Furthermore, it intended to present the buckling behavior of 3D printed FGSFs, variation of frequency and damping factor corresponding to first three modes with increase in load.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Book part
Publication date: 25 July 2023

Deepa Jain, Manoj Kumar Dash and K.S. Thakur

Abstract

Details

The Sustainability of Financial Innovation in E-Payment Systems
Type: Book
ISBN: 978-1-80455-884-3

Article
Publication date: 17 November 2023

Rituraj Raut, Savitri Jadhav and Nathrao B. Jadhav

The purpose of this study is to offer a better and more effective hexacopter design for a 3 kg payload using finite element analysis (FEA), facilitating the use of different…

Abstract

Purpose

The purpose of this study is to offer a better and more effective hexacopter design for a 3 kg payload using finite element analysis (FEA), facilitating the use of different materials for different components that too without compromising strength.

Design/methodology/approach

A 3D computer-aided design (CAD) model of a hexacopter with a regular hexagonal frame is presented. Furthermore, a finite element model is developed to perform a structural analysis and determine Von Mises stress and strain values along with deformations of different components of the proposed hexacopter design.

Findings

The results establish that carbon fibre outperforms acrylonitrile butadiene (ABS) with respect to deformations. Within the permissible limits of the stress and strain values, both carbon fiber and ABS are suggested for different components. Thus, a proposed hexacopter offers lighter weight, high strength and low cost.

Originality/value

The use of different materials for different components is suggested by making use of static structural analysis. This encourages new research work and helps in developing new applications of hexacopter, and it has never been reported in literature. The suggested materials for the components of the hexacopter will prove to be suitable considering weight, strength and cost.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 30 January 2024

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf Charles DSouza and Thirumaleshwara Bhat

The purpose of this study is to investigate the impact of titanium oxide (TiO2) filler on the abrasive wear properties of bamboo fiber reinforced epoxy composites (BFRCs) using a…

Abstract

Purpose

The purpose of this study is to investigate the impact of titanium oxide (TiO2) filler on the abrasive wear properties of bamboo fiber reinforced epoxy composites (BFRCs) using a Taguchi approach. The study aims to enhance the abrasive wear resistance of these composites by introducing TiO2 filler as a potential reinforcement, thus contributing to the development of sustainable and environmentally friendly materials.

Design/methodology/approach

This study focuses on the fabrication of epoxy/bamboo composites infused with TiO2 particles within the Wt.% range of 0–8 Wt.% using hand layup techniques. The resulting composites were subjected to wear testing according to ASTM G99-05 standards. Statistical analysis of the wear results was carried out using the Taguchi design of experiments (DOE). Additionally, an analysis of variance (ANOVA) was used to determine the influential control factors impacting the specific wear rate (SWR) and coefficient of friction (COF).

Findings

The study illuminates how integrating TiO2 filler enhances abrasive wear in epoxy/bamboo composites. Statistical analysis of SWR highlights abrasive grit size (grit) as the most influential factor, followed by normal load, Wt.% of TiO2 and sliding distance. Analysis of the COF identifies normal load as the primary influential factor, followed by grit, Wt.% of TiO2 and sliding distance. The Taguchi predictive model closely aligns with experimental results, validating its reliability. The morphological study revealed significant differences between the unfilled and TiO2-filled composites. The inclusion of TiO2 improved wear resistance, as evidenced by reduced surface damage and wear debris.

Originality/value

This research paper aims to integrate TiO2 filler and bamboo fibers to create an innovative hybrid composite material. TiO2 micro and nanoparticles show promise as filler materials, contributing to improved tribological properties of epoxy composites. The utilization of Taguchi’s DOE and ANOVA for statistical analysis provides valuable guidance for academic researchers and practitioners in optimizing control variables, especially in the context of natural fiber reinforced composites.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 March 2023

Daniel Amos and Naana Amakie Boakye-Agyeman

This study aims to establish the statistical relationships between corporate real estate added value indicators of cost reduction, increasing productivity, risk reduction and…

Abstract

Purpose

This study aims to establish the statistical relationships between corporate real estate added value indicators of cost reduction, increasing productivity, risk reduction and flexibility and organizational financial and non-financial performance.

Design/methodology/approach

The study adopted a mixed methods approach which encompasses initial expert interviews and subsequent questionnaire surveys. Partial least squares structural equation modelling was applied to test the proposed hypotheses of the study.

Findings

The results highlight the significant influence of three added value indicators on organizational performance while highlighting the need for strategic corporate real estate risk management to enhance performance.

Practical implications

The results of the study are useful to identify relevant added value indicators that can improve organizational performance as well as potential added value indicators that deserve attention for performance improvement. Moreover, it presents knowledge on corporate performance indicators which is sparsely explored in corporate real estate management literature.

Originality/value

This study makes a novel contribution to corporate real estate management literature by presenting a parsimonious model to alert corporate real estate managers on essential added value parameters towards organizational performance. The model set the theoretical debates to exploit additional added value dimensions and organizational performance.

Details

Journal of Corporate Real Estate , vol. 25 no. 4
Type: Research Article
ISSN: 1463-001X

Keywords

Open Access
Article
Publication date: 22 December 2022

Carolina Bermudo Gamboa, Sergio Martín Béjar, Francisco Javier Trujillo Vilches and Lorenzo Sevilla Hurtado

The purpose of this study is to cover the influence of selected printing parameters at a macro and micro-geometrical level, focusing on the dimensions, geometry and surface of…

Abstract

Purpose

The purpose of this study is to cover the influence of selected printing parameters at a macro and micro-geometrical level, focusing on the dimensions, geometry and surface of printed parts with short carbon fibers reinforced PLA. For this case study, a hollow cylindrical shape is considered, aiming to cover the gap detected in previous works analyzed.

Design/methodology/approach

Nowadays, additive manufacturing plays a very important role in the manufacturing industry, as can be seen through its numerous research and applications that can be found. Within the engineering industry, geometrical tolerances are essential for the functionality of the parts and their assembly, but the variability in three-dimensional (3D) printing makes dimensional control a difficult task. Constant development in 3D printing allows, more and more, printed parts with controlled and narrowed geometrical deviations and tolerances. So, it is essential to continue narrowing the studies to achieve the optimal printed parts, optimizing the manufacturing process as well.

Findings

Results present the relation between the selected printing parameters and the resulting printed part, showing the main deviations and the eligible values to achieve a better tolerance control. Also, from these results obtained, we present a parametric model that relates the geometrical deviations considered in this study with the printing parameters. It can provide an overview of the piece before printing it and so, adjusting the printing parameters and reducing time and number of printings to achieve a good part.

Originality/value

The main contribution is the study of the geometry selected under a 3D printing process, which is important because it considers parts that are created to fit together and need to comply with the required tolerances. Also, we consider that the parametric model can be a suitable approach to selecting the optimal printing parameters before printing.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 June 2023

Baldev Singh Rana, Gian Bhushan and Pankaj Chandna

The purpose of current study deals with the development and wear testing of jute and cotton fiber reinforced with nano fly ash-based epoxy composites. Performance of waste cotton…

Abstract

Purpose

The purpose of current study deals with the development and wear testing of jute and cotton fiber reinforced with nano fly ash-based epoxy composites. Performance of waste cotton fabric nano hybrid composites are compared with waste jute fabric nano hybrid composites.

Design/methodology/approach

Basic hand layup technique was used to develop composites. To optimize the parameters and design of experiments, Taguchi design was implemented to test wear rate and co-efficient of friction as per ASTM standards. Performance of waste cotton fabric nano hybrid composites is compared with waste jute fabric nano hybrid composites.

Findings

Result shows that nano fly ash lowers the wear rate and co-efficient of friction in developed composites. Findings reveals that hybrid composites of waste jute Fabric with 3 Wt.% of nano fly ash performed best amongst all composites developed. Morphology of nano composites worn out surfaces are also analyzed through SEM.

Practical implications

Practically, textile waste, i.e. jute, cotton and nano fly ash (thermal power plant) all wastes, is used to develop composites for multi-function application.

Social implications

Wastes are reused and recycled to develop epoxy-based composites for sustainable structures in aviation.

Originality/value

To the best of the authors’ knowledge, nano fly ash and jute, cotton combination is used for the first time to develop and test for wear application.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 April 2024

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf D'Souza and Thirumaleshwara Bhat

This study explores how titanium oxide (TiO2) filler influences the specific wear rate (SWR) in flax fiber-reinforced epoxy composites (FFRCs) through a Taguchi approach. It aims…

Abstract

Purpose

This study explores how titanium oxide (TiO2) filler influences the specific wear rate (SWR) in flax fiber-reinforced epoxy composites (FFRCs) through a Taguchi approach. It aims to boost abrasive wear resistance by incorporating TiO2 filler, promoting sustainable and eco-friendly materials.

Design/methodology/approach

This study fabricates epoxy/flax composites with TiO2 particles (0–8 wt%) using hand layup. Composites were tested for wear following American Society for Testing and Materials (ASTM) G99-05. Statistical analysis used Taguchi design of experiments (DOE), with ANOVA identifying key factors affecting SWR in abrasive sliding conditions.

Findings

The study illuminates how integrating TiO2 filler particles into epoxy/flax composites enhances abrasive wear properties. Statistical analysis of SWR highlights abrasive grit size (grit) as the most influential factor, followed by normal load, wt% of TiO2 and sliding distance. Grit size has the highest effect at 43.78%, and wt% TiO2 filler contributes 15.61% to SWR according to ANOVA. Notably, the Taguchi predictive model closely aligns with experimental results, validating its reliability.

Originality/value

This paper integrates TiO2 filler and flax fibers to form a novel hybrid composite with enhanced tribological properties in epoxy composites. The use of Taguchi DOE and ANOVA offers valuable insights for optimizing control variables, particularly in natural fiber-reinforced composites (NFRCs).

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 10 October 2023

Fatma Bakal Gumus and Ahmet Yapici

The purpose of this paper is to investigate the effect of doping element on the structural, thermal properties, mechanical performance and the failure mechanism of hexagonal nano…

Abstract

Purpose

The purpose of this paper is to investigate the effect of doping element on the structural, thermal properties, mechanical performance and the failure mechanism of hexagonal nano boron nitride (h-BN)-reinforced basalt fabric (BF)/epoxy composites produced by hand lay-up and vacuum bagging technique. h-BN particles doped to composite materials increased the tensile, bending and impact strength of the composite at certain rates while 1 Wt. % h- BN addition shows the highest tensile and flexural strength.

Design/methodology/approach

The epoxy resin was doped with h-BN nanopowder at the certain rates (0, 1, 2 and 4 Wt.%) and the epoxy: hardener ratios used in the study were selected as 80%: 20% by weight. Then, with the aid of a roller by hand lay-up method, a mixture of epoxy + hardeners containing nanoparticles and nanoparticle-free were fed onto BFs, 12 layers of each dimension 30 cm × 30 cm. The surplus epoxy resin was moved away from the composite sheets using the vacuum bagging process and left to cure at room temperature for 24 h. ASTM D3039 for tensile, D7264 for three-point bending and D256 for Izod impact test were performed for the mechanical tests. After the tensile test, the morphologies of the fracture surface were examined with a stereomicroscope and various failure mechanisms are highlighted.

Findings

In this study, a series of basalt/epoxy composites with h-BN nanopowders have been prepared to identify the effect of filler ratio on mechanical properties. It has been known from the results of mechanical experiments that the addition of h-BN improves the mechanical performance of materials at a certain rate. The tensile and flexural strengths of h-BN doped composites, increase for concentrations of 1 Wt.% h-BN, but decrease with the increasing content of it. The basalt/epoxy resin composite with higher mechanical properties could be a potential material in the automotive and aerospace industries.

Originality/value

The aim of this study is to contribute to literature within the context of this new combination of composites and their mechanical properties, failure mechanisms. It presents detailed characterization of each composite by using X-ray differaction (XRD), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 9 of 9