Search results

1 – 10 of over 6000
Article
Publication date: 7 March 2016

Anup Paul, Arunn Narasimhan and Sarit Kumar Das

The large blood vessels (LBV) would act as a heat sink and hence play a significant role during photo-thermal therapy. Gold nanoshell was considered as a high-heat absorbing agent…

Abstract

Purpose

The large blood vessels (LBV) would act as a heat sink and hence play a significant role during photo-thermal therapy. Gold nanoshell was considered as a high-heat absorbing agent in photo-thermal heating to reduce the cooling effect of LBV. The heat sink effect of LBV results in insignificant irreversible tissue thermal damage. The paper aims to discuss these issues.

Design/methodology/approach

In this paper, the thermal history of tissue embedded with LBV during photo-thermal heating were calculated using finite element-based simulation technique. A volumetric laser source term based on modified Beer-Lambert law was introduced to model laser heating. The numerically predicted temperature drop was validated against that of previously performed experiments by the authors on tissue mimic embedded with simulated blood vessels. In the later part of the study, Arrhenius equation was coupled with the energy equation to investigate and report the irreversible thermal damage to the bio-tissues.

Findings

The results obtained conclude that tissue with different orientation of blood vessels results in different thermal response at the tissue surface. Gold nanoshells were introduced into the laser irradiated tissue to overcome the cooling effect of LBV during plasmonic photo-thermal heating. The effect of size and concentration of nanoparticles on tissue heating were analyzed. The predicted damage parameter was much lower in case of tissue embedded with blood vessel than that predicted in case of bare tissue, which results in incomplete tissue necrosis. Finally, the effects of laser specification, blood vessel specification and blood perfusion on the tissue thermal damage were examined.

Originality/value

The conjugate energy equations in conjunction with Arrhenius equation were solved numerically to predict the tissue irreversible damage embedded with LBV.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 1999

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper…

2607

Abstract

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper contains references to papers, conference proceedings and theses/dissertations on the subject that were published between 1977‐1998. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, ferrites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.

Details

Engineering Computations, vol. 16 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 August 2019

Virendra Kumar

This paper aims to study the residual test results under uni-axial compression of tie confined pre-damaged normal strength concrete short columns subjected to elevated…

Abstract

Purpose

This paper aims to study the residual test results under uni-axial compression of tie confined pre-damaged normal strength concrete short columns subjected to elevated temperatures.

Design/methodology/approach

The test variables included temperature of exposure, spacing of transverse confining reinforcement and pre-damage level. An experimental program was designed and carried out involving testing of hoop confined concrete cylindrical specimens exposed to elevated temperatures ranging from room temperature to 900 °C.

Findings

The test results indicate that the residual strength, strain corresponding to the peak stress and the post-peak strains of confined concrete are not affected significantly up to an exposure temperature of 300 °C. However, the peak confined stress falls and the corresponding strain increase considerably in the temperature range of 600 to 900 °C. It is shown that an increase in the degree of confinement reinforcement results in an increased residual strength and deformability of pre-damaged confined concrete.

Research limitations/implications

It is applicable in finding the residual strength and strain of the pre-damaged confined concrete in uni-axial compression after exposure to elevated temperature.

Practical implications

The practical implications is that the test result is applicable in finding the residual strengths of pre-damaged confined concrete under uni-axial compression after exposure to elevated temperature.

Social implications

The main aim of the present investigation is to provide experimental data on the residual behaviour of pre-damaged confined concrete subjected to high temperatures.

Originality/value

The results of this study may be useful for developing the guidelines for designing the confinement reinforcement of reinforced concrete columns against the combined actions of earthquake and fire, as well as for designing the retrofitting schemes after these sequential disasters.

Details

Journal of Structural Fire Engineering, vol. 11 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 7 March 2016

Dong Li, Bin Chen and Guo-Xiang Wang

The purpose of this paper is to present a numerical analysis of the laser surgery of port wine stain (PWS) with cryogen spray cooling to compare the treatment effect between pulse…

Abstract

Purpose

The purpose of this paper is to present a numerical analysis of the laser surgery of port wine stain (PWS) with cryogen spray cooling to compare the treatment effect between pulse dye laser and Nd:YAG laser, explain the incomplete clear of the lesion and optimize the laser parameter.

Design/methodology/approach

The complex structure of skin and PWS is simplified to a multi-layer skin model that consists of top epidermal layer and underneath dermis layer embedded with discrete blood vessels. The cooling effect of cryogen spray before laser firing is quantified by a general correlation obtained recently from the experimental data. The light distribution is modeled by the Monte Carlo method. The heat transfer in skin tissue is calculated by Pennes bioheat transfer model. The thermal damage of blood vessel is quantified by the Arrhenius damage integral.

Findings

For the vessel size studied (10-120 µm), pulse duration is recommended shorter than 6 ms. Large and deeply buried vessels, which may survive from 595 nm laser irradiation, can be coagulated by 1,064 nm laser due to its deep light penetration depth in skin. Furthermore, a desired uniform heating within the large vessel lumen can be achieved by 1,064 nm laser whereas 595 nm laser produce non-uniform heating.

Originality/value

The possible reason for the poor responding and incomplete clearance lesions is clarified. Laser wavelength and pulse duration are suggested to improve the clinical results.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 February 2009

Stoyan Stoyanov, Chris Bailey and Marc Desmulliez

This paper aims to present an integrated optimisation‐modelling computational approach for virtual prototyping that helps design engineers to improve the reliability and…

Abstract

Purpose

This paper aims to present an integrated optimisation‐modelling computational approach for virtual prototyping that helps design engineers to improve the reliability and performance of electronic components and systems through design optimisation at the early product development stage. The design methodology is used to identify the optimal design of lead‐free (Sn3.9Ag0.6Cu) solder joints in fine‐pitch copper column bumped flip‐chip electronic packages.

Design/methodology/approach

The design methodology is generic and comprises numerical techniques for computational modelling (finite element analysis) coupled with numerical methods for statistical analysis and optimisation. In this study, the integrated optimisation‐modelling design strategy is adopted to prototype virtually a fine‐pitch flip‐chip package at the solder interconnect level, so that the thermal fatigue reliability of the lead‐free solder joints is improved and important design rules to minimise the creep in the solder material, exposed to thermal cycling regimes, are formulated. The whole prototyping process is executed in an automated way once the initial design task is formulated and the conditions and the settings for the numerical analysis used to evaluate the flip‐chip package behaviour are specified. Different software modules that incorporate the required numerical techniques are used to identify the solution of the design optimisation problem related to solder joints reliability optimisation.

Findings

For fine‐pitch flip‐chip packages with copper column bumped die, it is found that higher solder joint volume and height of the copper column combined with lower copper column radius and solder wetting around copper column have a positive effect on the thermo‐mechanical reliability.

Originality/value

The findings of this research provide design rules for more reliable lead‐free solder joints for copper column bumped flip‐chip packages and help to establish further the technology as one of the viable routes for flip‐chip packaging.

Details

Soldering & Surface Mount Technology, vol. 21 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 28 April 2014

Jonas Johansson, Ilja Belov, Erland Johnson and Peter Leisner

The purpose of this paper is to introduce a novel computational method to evaluate damage accumulation in a solder joint of an electronic package, when exposed to operating…

Abstract

Purpose

The purpose of this paper is to introduce a novel computational method to evaluate damage accumulation in a solder joint of an electronic package, when exposed to operating temperature environment. A procedure to implement the method is suggested, and a discussion of the method and its possible applications is provided in the paper.

Design/methodology/approach

Methodologically, interpolated response surfaces based on specially designed finite element (FE) simulation runs, are employed to compute a damage metric at regular time intervals of an operating temperature profile. The developed method has been evaluated on a finite-element model of a lead-free PBGA256 package, and accumulated creep strain energy density has been chosen as damage metric.

Findings

The method has proven to be two orders of magnitude more computationally efficient compared to FE simulation. A general agreement within 3 percent has been found between the results predicted with the new method, and FE simulations when tested on a number of temperature profiles from an avionic application. The solder joint temperature ranges between +25 and +75°C.

Practical implications

The method can be implemented as part of reliability assessment of electronic packages in the design phase.

Originality/value

The method enables increased accuracy in thermal fatigue life prediction of solder joints. Combined with other failure mechanisms, it may contribute to the accuracy of reliability assessment of electronic packages.

Article
Publication date: 1 April 2005

Jaroslav Mackerle

Ceramic materials and glasses have become important in modern industry as well as in the consumer environment. Heat resistant ceramics are used in the metal forming processes or…

5132

Abstract

Purpose

Ceramic materials and glasses have become important in modern industry as well as in the consumer environment. Heat resistant ceramics are used in the metal forming processes or as welding and brazing fixtures, etc. Ceramic materials are frequently used in industries where a wear and chemical resistance are required criteria (seals, liners, grinding wheels, machining tools, etc.). Electrical, magnetic and optical properties of ceramic materials are important in electrical and electronic industries where these materials are used as sensors and actuators, integrated circuits, piezoelectric transducers, ultrasonic devices, microwave devices, magnetic tapes, and in other applications. A significant amount of literature is available on the finite element modelling (FEM) of ceramics and glass. This paper gives a listing of these published papers and is a continuation of the author's bibliography entitled “Finite element modelling of ceramics and glass” and published in Engineering Computations, Vol. 16, 1999, pp. 510‐71 for the period 1977‐1998.

Design/methodology/approach

The form of the paper is a bibliography. Listed references have been retrieved from the author's database, MAKEBASE. Also Compendex has been checked. The period is 1998‐2004.

Findings

Provides a listing of 1,432 references. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.

Originality/value

This paper makes it easy for professionals working with the numerical methods with applications to ceramics and glasses to be up‐to‐date in an effective way.

Details

Engineering Computations, vol. 22 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 April 2023

Yushan Gao, Ping Zhang and Shihui Huo

Regeneratively cooled thrust chamber is a key component of reusable liquid rocket engines. Subjected to cyclic thermal-mechanical loadings, its failure can seriously affect the…

Abstract

Purpose

Regeneratively cooled thrust chamber is a key component of reusable liquid rocket engines. Subjected to cyclic thermal-mechanical loadings, its failure can seriously affect the service life of engines. QCr0.8 copper alloy is widely used in thrust chamber walls due to its excellent thermal conductivity, and its mechanical and fatigue properties are essential for the evaluation of thrust chamber life. This paper contributes to the understanding of the damage mechanism and material selection of regeneratively cooled thrust chambers for reusable liquid rocket engines.

Design/methodology/approach

In this paper, tensile and low-cycle fatigue (LCF) tests were conducted for QCr0.8 alloy, and a Chaboche combined hardening model was established to describe the elastic-plastic behavior of QCr0.8 at different temperatures and strain levels. In addition, an LCF life prediction model was established based on the Manson–Coffin formula. The reliability and accuracy of models were then verified by simulations in ABAQUS. Finally, the service life was evaluated for a regenerative cooling thrust chamber, under the condition of cyclic startup and shutdown.

Findings

In this paper, a Chaboche combined hardening model was established to describe the elastoplastic behavior of QCr0.8 alloy at different temperatures and strain levels through LCF experiments. The parameters of the fitted Chaboche model were simulated in ABAQUS, and the simulation results were compared with the experimental results. The results show that the model has high reliability and accuracy in characterizing the viscoplastic behavior of QCr0.8 alloy.

Originality/value

(1)The parameters of a Chaboche combined hardening constitutive model and LCF life equation were optimized by tensile and strain-controlled fatigue tests of QCr0.8 copper alloy. (2) Based on the Manson–Coffin formula, the reliability and accuracy of constitutive model were then verified by simulations in ABAQUS. (3)Thermal-mechanical analysis was carried out for regeneratively cooled thrust chamber wall of a reusable liquid rocket engine, and the service life considering LCF, creep and ratcheting damage was analyzed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 February 1990

E.E. de Kluizenaar

In Part 1, background information on mechanical properties and metallurgy of solder alloys and soldered joints has been presented. In this part, mechanisms of damage and…

26

Abstract

In Part 1, background information on mechanical properties and metallurgy of solder alloys and soldered joints has been presented. In this part, mechanisms of damage and degradation of components and soldered joints during soldering, during transport, and during field life are discussed. Thermal shock damage of components and excessive dissolution of metallisations are the major effects during soldering. During transport, fatigue of leads and fracture may be caused by vibration and mechanical shocks respectively. During field life, degradation is governed primarily by low cycle fatigue of the solder and incidentally also by formation of intermetallic diffusion layers between solder and base metals. This article contains an extended illustration of solder fatigue of joints on a variety of component and board types. Finally, the influence of the variety of soldered constructions in electronic circuits on solder fatigue is discussed.

Details

Soldering & Surface Mount Technology, vol. 2 no. 2
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 23 December 2020

Łukasz Brodzik

Paper aims to present problem of aerodynamic heating of a metallic heat shield. The key elements of this construction are metallic layers of superalloy honeycomb, which…

Abstract

Purpose

Paper aims to present problem of aerodynamic heating of a metallic heat shield. The key elements of this construction are metallic layers of superalloy honeycomb, which significantly increase the structure’s resistance to impact. Paper describes the problem of influence of damage size on increase of thermal load.

Design/methodology/approach

Numerical analysis was performed in a non-commercial environment FreeFem++ using finite element method, and its results were compared with the results given in the literature.

Findings

In thermal protection system, a modification was used to delay increase in temperature on the underlying structure as well as to reduce its maximum value.

Originality/value

In the further part of the paper, selected insulation material was modified by adding additional conductive material.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 6000