Search results
1 – 10 of over 3000Rajendra Machavaram and Shankar Krishnapillai
The purpose of this paper is to provide an effective and simple technique to structural damage identification, particularly to identify a crack in a structure. Artificial…
Abstract
Purpose
The purpose of this paper is to provide an effective and simple technique to structural damage identification, particularly to identify a crack in a structure. Artificial neural networks approach is an alternative to identify the extent and location of the damage over the classical methods. Radial basis function (RBF) networks are good at function mapping and generalization ability among the various neural network approaches. RBF neural networks are chosen for the present study of crack identification.
Design/methodology/approach
Analyzing the vibration response of a structure is an effective way to monitor its health and even to detect the damage. A novel two‐stage improved radial basis function (IRBF) neural network methodology with conventional RBF in the first stage and a reduced search space moving technique in the second stage is proposed to identify the crack in a cantilever beam structure in the frequency domain. Latin hypercube sampling (LHS) technique is used in both stages to sample the frequency modal patterns to train the proposed network. Study is also conducted with and without addition of 5% white noise to the input patterns to simulate the experimental errors.
Findings
The results show a significant improvement in identifying the location and magnitude of a crack by the proposed IRBF method, in comparison with conventional RBF method and other classical methods. In case of crack location in a beam, the average identification error over 12 test cases was 0.69 per cent by IRBF network compared to 4.88 per cent by conventional RBF. Similar improvements are reported when compared to hybrid CPN BPN networks. It also requires much less computational effort as compared to other hybrid neural network approaches and classical methods.
Originality/value
The proposed novel IRBF crack identification technique is unique in originality and not reported elsewhere. It can identify the crack location and crack depth with very good accuracy, less computational effort and ease of implementation.
Details
Keywords
K. Shankar and N. Jinesh
The purpose of this paper is to provide an effective and simple technique for structural parameter identification, particularly to identify multiple cracks in a structure…
Abstract
Purpose
The purpose of this paper is to provide an effective and simple technique for structural parameter identification, particularly to identify multiple cracks in a structure using simultaneous measurement of acceleration responses and voltage signals from PZT patches which is a multidisciplinary approach. A hybrid element constituted of one-dimensional beam element and a PZT sensor is used with reduced material properties which is very convenient for beams and is a novel application for inverse problems.
Design/methodology/approach
Multi-objective formulation is used whereby structural parameters are identified by minimizing the deviation between the predicted and measured values from the PZT patch and acceleration responses, when subjected to excitation. In the proposed method, a patch is attached to either end of the fixed beam. Using particle swarm optimization algorithm, normalized fitness functions are defined for both voltage and acceleration components with weighted aggregation multi-objective optimization technique. The signals are polluted with 5 percent Gaussian noise to simulate experimental noise. The effects of various weighting factors for the combined objective function are studied. The scheme is also experimentally validated by identification of cracks in a fixed-fixed beam.
Findings
The numerical and experimental results shows that significant improvement in accuracy of damage detection is achieved by the combined multidisciplinary method, when compared with only voltage or only acceleration-matching method as well as with other methods.
Originality/value
The proposed multidisciplinary crack identification approach, which is based on one-dimensional PZT patch model as well as conventional acceleration method, is not reported in the literature.
Details
Keywords
João Luiz Junho Pereira, Matheus Chuman, Sebastião Simões Cunha Jr and Guilherme Ferreira Gomes
This study aims to develop a numerical identification and characterization of crack propagation through the use of a new optimization metaheuristics called Lichtenberg…
Abstract
Purpose
This study aims to develop a numerical identification and characterization of crack propagation through the use of a new optimization metaheuristics called Lichtenberg optimization.
Design/methodology/approach
The damage-identification problem is treated as an inverse problem, which combines finite element methods with intelligent computational methods to obtain the best possible response. To optimize the objectives, the Lichtenberg algorithm is applied, which includes concepts of random cluster growth in nature.
Findings
The simulations show that it is possible to determine the Lichtenberg spectrum algorithm a part of the structure to be removed and replaced in this case to stop the propagation.
Originality/value
The results show a very good crack identification in plates-like structures using the Lichtenberg algorithm (LA) based only in strain fields. Although many studies have reported on damage-identification-based optimization methods, very few have focused on the crack tip modeling and LA as the main solver.
Details
Keywords
Henning Ressing and Mohamed S. Gadala
To investigate the feasibility of using single/multi variable optimisation techniques with vibration measurements in solving the inverse crack identification problem.
Abstract
Purpose
To investigate the feasibility of using single/multi variable optimisation techniques with vibration measurements in solving the inverse crack identification problem.
Design/methodology/approach
The finite element method is used to solve the forward crack problem with a special nodal crack force approach. The multi‐variable optimisation approach is reduced to a much more efficient single‐variable one by decoupling the physical variables in the problem.
Findings
It is shown that, for the crack identification problem, global optimisation algorithms perform much better than other algorithms relying heavily on objective function gradients. Simultaneous identification of crack size and location proved to be difficult. Decoupling of the physical variable is introduced and proved to provide efficient results with single‐variable optimisation algorithms.
Research limitations/implications
Need for improving the reliability and accuracy of the procedure for smaller crack sizes. Need for developing and investigation more rigorous and robust multi‐variable optimisation algorithm.
Practical implications
Any information about approximate crack size and location provides significant aid in the maintenance and online monitoring of rotating equipment.
Originality/value
The paper offers practical approach and procedure for online monitoring and crack identification of slow rotating equipment.
Details
Keywords
The flexible eddy current array sensor has the characteristics of lightweight and flexibility, which has a great application prospect in the field of fatigue crack…
Abstract
Purpose
The flexible eddy current array sensor has the characteristics of lightweight and flexibility, which has a great application prospect in the field of fatigue crack monitoring. But the exciting layout and feature signal extraction have a great influence on the crack monitoring characteristics of the sensor. This paper aims to propose a method using crack disturbed voltage as sensitivity to characterize crack propagation.
Design/methodology/approach
Flexible eddy current array sensors with reverse and codirectional exciting layout are proposed, and the advantages and disadvantages of three characterization methods based on the change of trans-impedance amplitude, the change of the trans-impedance’s real and imaginary part and the crack disturbed voltage are compared and analyzed by finite element simulation. Finally, the fatigue crack monitoring experiment is carried out.
Findings
The crack disturbed voltage and the change of trans-impedance’s imaginary part can effectively characterize the crack propagation for sensors with different exciting layouts. The codirectional exciting layout sensor has better crack identification sensitivity than the reverse exciting layout sensor, especially the induction coil 2. When the distance between the exciting coil and the induction coil is 0.1, 0.2 and 0.3 mm, it is increased by 372.09%, 295.24% and 231.43%, respectively.
Originality/value
Crack disturbed voltage can effectively characterize the crack propagation for sensors with two different exciting layouts.
Details
Keywords
S.C. Mohan, Amit Yadav, Dipak Kumar Maiti and Damodar Maity
The early detection of cracks, corrosion and structural failure in aging structures is one of the major challenges in the civil, mechanical and aircraft industries. Common…
Abstract
Purpose
The early detection of cracks, corrosion and structural failure in aging structures is one of the major challenges in the civil, mechanical and aircraft industries. Common inspection techniques are time consuming and hence can have strong economic implications due to downtime. The paper aims to discuss these issues.
Design/methodology/approach
As a result, during the past decade a number of methodologies have been proposed for detecting crack in structure based on variations in the structure's dynamic characteristics. This work showcases the efficacy of particle swarm optimization (PSO) and genetic algorithm (GA) in damage assessment of structures.
Findings
Efficiency of these tools has been tested on structures like beam, plane and space truss. The results show the effectiveness of PSO in crack identification and the possibility of implementing it in a real-time structural health monitoring system for aircraft and civil structures.
Originality/value
The methodology presented establishes the PSO as robust and competent tool over GA for crack identification using changes in natural frequencies.
Details
Keywords
Mohamed S. Gadala and Andrew D.B. McCullough
This paper presents a numerical study of inverse parameter identification problems in fracture mechanics. Inverse methodology is applied to the detection of subsurface…
Abstract
This paper presents a numerical study of inverse parameter identification problems in fracture mechanics. Inverse methodology is applied to the detection of subsurface cracks and to the study of propagating cracks. The procedure for detecting subsurface cracks combines the finite element method with a sequential quadratic programming algorithm to solve for the unknown geometric parameters associated with the internal flaw. The procedure utilizes finite element substructuring capabilities in order to minimize the processing and solution time for practical problems. The finite element method and non‐linear optimization are also used in determining the direction a crack will propagate in a heterogeneous planar domain. This procedure involves determining the direction that produces the maximum strain energy release for a given increment of crack growth. The procedure is applied to several numerical examples. The results of these numerical studies coincide with theoretical predictions and experimentally observed crack behavior.
Details
Keywords
Vyankatesh Prabhakar Bhaurkar and Ajaykumar Gulabsing Thakur
In the case of machines, structures and assemblies, the crack generation and propagation is becoming a great concern, especially in airplane wings, turbine blades and such…
Abstract
Purpose
In the case of machines, structures and assemblies, the crack generation and propagation is becoming a great concern, especially in airplane wings, turbine blades and such other applications. This is because these parts are very large in size and the crack size is very small, i.e. in microns. Hence, there is an important need to locate the crack and to find its severity before it starts to propagate and also to detect these parameters by on-site non-destructive testing methods. This paper aims to develop and test the methodology to locate an unknown single open crack in steel cantilever beam along with its severity.
Design/methodology/approach
This study covers analytical, numerical and experimental analysis for healthy and cracked beams. Vibration-based approach and finite element analysis (FEA) approach is used for analytical and numerical study respectively. Own designed and dedicated experimental set-up is used for testing purpose along with fast fourier transform analyzer. An anti-resonance technique is used to locate and to find the severity of unknown crack. The statistical approach helps to validate the results.
Findings
The comparison of the natural frequency of healthy and cracked steel cantilever beam shows that the crack in the beam reduces its natural frequency. The accuracy of results is achieved by finding actual density and Young's modulus of steel specimen under consideration. It is helpful to verify the health of the non-cracked beam by applying dye testing. The study of natural frequency and anti-resonance gives the location of crack and its depth also. The FEA approach proved to be an important tool for numerical analysis of cracked beam.
Research limitations/implications
The research is limited to steel material and surface cracks only.
Practical implications
Practically, this study highlights how to locate a surface crack in steel beam along with its depth, i.e. severity with great accuracy. Identification of the factors such as location and depth of a crack provide the severity of damage in airplane wings, turbine blades, bridges and many more, and thereby, it helps in safety at working vicinity.
Social implications
The identification and solutions of current research helps to predict the operational life of machine elements such as airplane wings, turbine blades, bridges and many more, and thereby, it helps in the safety of people in working vicinity of such structures.
Originality/value
The work presented, is based on original research and experimentation. This work is valued contribution in the field of methodologies applied for fault detection in structures and also determining its correctness by numerical and experimental work.
Details
Keywords
Diana Andrushia, N. Anand and Prince Arulraj
Health monitoring of concrete is one of the important tasks in the structural health monitoring. The life of any infrastructure relies on the quality of the concrete. The…
Abstract
Purpose
Health monitoring of concrete is one of the important tasks in the structural health monitoring. The life of any infrastructure relies on the quality of the concrete. The computer vision-based methods are very useful to identify the structural defects. The identification of minor cracks in the noisy concrete image is complex. The purpose of this paper is to denoise the concrete crack images and also segment the cracks.
Design/methodology/approach
The novelty of the proposed work lies on the usage of anisotropic diffusion filter in the noisy concrete images. Initially anisotropic diffusion filter is applied to smoothen the concrete images. Adaptive threshold and gray level-based edge stopping constant are used in the diffusion process. The statistical six sigma-based method is utilized to segment the cracks from smoothened concrete images.
Findings
The proposed method is compared with five state-of-the-art-methods with the performance metrics of mean square error, peak signal to noise ratio and mean structural similarity. The experimental results highlight the advantages of the proposed method.
Originality/value
The novelty of the proposed work lies on the usage of anisotropic diffusion filter in the noisy concrete images. This research work gives the scope for structural damage evaluation by the automation techniques.
Details
Keywords
Hassan Samami and S. Olutunde Oyadiji
The purpose of this paper is to employ analytical and numerical techniques to generate modal displacement data of damaged beams containing very small crack-like surface…
Abstract
Purpose
The purpose of this paper is to employ analytical and numerical techniques to generate modal displacement data of damaged beams containing very small crack-like surface flaws or slots and to use the data in the development of damage detection methodology. The detection method involves the use of double differentiation of the modal data for identification of the flaw location and magnitude.
Design/methodology/approach
The modal displacements of damaged beams are simulated analytically using the Bernoulli-Euler theory and numerically using the finite element method. The principle used in the analytical approach is based on changes in the transverse displacement due to the localized reduction of the flexural rigidity of the beam. Curvature analysis is employed to identify and locate the structural flaws from the modal data. The curvature mode shapes are calculated using a central difference approximation. The effects of random noise on the detectability of the structural flaws are also computed.
Findings
The analytical approach is much more robust in simulating modal displacement data for beams with crack-like surface flaws or slots than the finite element analysis (FEA) approach especially for crack-like surface flaws or slots of very small depths. The structural flaws are detectable in the presence of random noise of up to 5 per cent.
Originality/value
Simulating the effects of small crack-like surface flaws is important because it is essential to develop techniques to detect cracks at an early stage of their development. The FEA approach can only simulate the effects of crack-like surface flaws or slots with depth ratio greater than 10 per cent. On the other hand, the analytical approach using the Bernoulli-Euler theory can simulate the effects of crack-like surface flaws or slots with depth ratio as small as 2 per cent.
Details