Search results

1 – 10 of over 14000
Book part
Publication date: 3 June 2008

Nathaniel T. Wilcox

Choice under risk has a large stochastic (unpredictable) component. This chapter examines five stochastic models for binary discrete choice under risk and how they combine with…

Abstract

Choice under risk has a large stochastic (unpredictable) component. This chapter examines five stochastic models for binary discrete choice under risk and how they combine with “structural” theories of choice under risk. Stochastic models are substantive theoretical hypotheses that are frequently testable in and of themselves, and also identifying restrictions for hypothesis tests, estimation and prediction. Econometric comparisons suggest that for the purpose of prediction (as opposed to explanation), choices of stochastic models may be far more consequential than choices of structures such as expected utility or rank-dependent utility.

Details

Risk Aversion in Experiments
Type: Book
ISBN: 978-1-84950-547-5

Article
Publication date: 9 April 2024

Baixi Chen, Weining Mao, Yangsheng Lin, Wenqian Ma and Nan Hu

Fused deposition modeling (FDM) is an extensively used additive manufacturing method with the capacity to build complex functional components. Due to the machinery and…

Abstract

Purpose

Fused deposition modeling (FDM) is an extensively used additive manufacturing method with the capacity to build complex functional components. Due to the machinery and environmental factors during manufacturing, the FDM parts inevitably demonstrated uncertainty in properties and performance. This study aims to identify the stochastic constitutive behaviors of FDM-fabricated polylactic acid (PLA) tensile specimens induced by the manufacturing process.

Design/methodology/approach

By conducting the tensile test, the effects of the printing machine selection and three major manufacturing parameters (i.e., printing speed S, nozzle temperature T and layer thickness t) on the stochastic constitutive behaviors were investigated. The influence of the loading rate was also explained. In addition, the data-driven models were established to quantify and optimize the uncertain mechanical behaviors of FDM-based tensile specimens under various printing parameters.

Findings

As indicated by the results, the uncertain behaviors of the stiffness and strength of the PLA tensile specimens were dominated by the printing speed and nozzle temperature, respectively. The manufacturing-induced stochastic constitutive behaviors could be accurately captured by the developed data-driven model with the R2 over 0.98 on the testing dataset. The optimal parameters obtained from the data-driven framework were T = 231.3595 °C, S = 40.3179 mm/min and t = 0.2343 mm, which were in good agreement with the experiments.

Practical implications

The developed data-driven models can also be integrated into the design and characterization of parts fabricated by extrusion and other additive manufacturing technologies.

Originality/value

Stochastic behaviors of additively manufactured products were revealed by considering extensive manufacturing factors. The data-driven models were proposed to facilitate the description and optimization of the FDM products and control their quality.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Content available

Abstract

Details

Kybernetes, vol. 41 no. 7/8
Type: Research Article
ISSN: 0368-492X

Book part
Publication date: 4 December 2020

K.S.S. Iyer and Madhavi Damle

This chapter has been seminal work of Dr K.S.S. Iyer, which has taken time to develop, for over the last 56 years to be presented here. The method in advance predictive analytics…

Abstract

This chapter has been seminal work of Dr K.S.S. Iyer, which has taken time to develop, for over the last 56 years to be presented here. The method in advance predictive analytics has developed, from his several other applications, in predictive modeling by using the stochastic point process technique. In the chapter on advance predictive analytics, Dr Iyer is collecting his approaches and generalizing it in this chapter. In this chapter, two of the techniques of stochastic point process known as Product Density and Random point process used in modelling problems in High energy particles and cancer, are redefined to suit problems currently in demand in IoT and customer equity in marketing (Iyer, Patil, & Chetlapalli, 2014b). This formulation arises from these techniques being used in different fields like energy requirement in Internet of Things (IoT) devices, growth of cancer cells, cosmic rays’ study, to customer equity and many more approaches.

Article
Publication date: 29 April 2014

Ahmed Abou-Elyazied Abdallh and Luc Dupré

Magnetic material properties of an electromagnetic device (EMD) can be recovered by solving a coupled experimental numerical inverse problem. In order to ensure the highest…

Abstract

Purpose

Magnetic material properties of an electromagnetic device (EMD) can be recovered by solving a coupled experimental numerical inverse problem. In order to ensure the highest possible accuracy of the inverse problem solution, all physics of the EMD need to be perfectly modeled using a complex numerical model. However, these fine models demand a high computational time. Alternatively, less accurate coarse models can be used with a demerit of the high expected recovery errors. The purpose of this paper is to present an efficient methodology to reduce the effect of stochastic modeling errors in the inverse problem solution.

Design/methodology/approach

The recovery error in the electromagnetic inverse problem solution is reduced using the Bayesian approximation error approach coupled with an adaptive Kriging-based model. The accuracy of the forward model is assessed and adapted a priori using the cross-validation technique.

Findings

The adaptive Kriging-based model seems to be an efficient technique for modeling EMDs used in inverse problems. Moreover, using the proposed methodology, the recovery error in the electromagnetic inverse problem solution is largely reduced in a relatively small computational time and memory storage.

Originality/value

The proposed methodology is capable of not only improving the accuracy of the inverse problem solution, but also reducing the computational time as well as the memory storage. Furthermore, to the best of the authors knowledge, it is the first time to combine the adaptive Kriging-based model with the Bayesian approximation error approach for the stochastic modeling error reduction.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 April 2018

Harpreet Kaur and Surya Prakash Singh

Procurement planning has always been a huge and challenging activity for business firms, especially in manufacturing. With government legislations about global concern over carbon…

Abstract

Purpose

Procurement planning has always been a huge and challenging activity for business firms, especially in manufacturing. With government legislations about global concern over carbon emissions, the manufacturing firms are enforced to regulate and reduce the emissions caused throughout the supply chain. It is observed that procurement and logistics activities in manufacturing firms contribute heavily toward carbon emissions. Moreover, highly dynamic and uncertain business environment with uncertainty in parameters such as demand, supplier and carrier capacity adds to the complexity in procurement planning. The paper aims to discuss these issues.

Design/methodology/approach

This paper is a novel attempt to model environmentally sustainable stochastic procurement (ESSP) problem as a mixed-integer non-linear program. The ESSP optimizes the procurement plan of the firm including lot-sizing, supplier and carrier selection by addressing uncertainty and environmental sustainability. The model applies chance-constrained-based approach to address the uncertain parameters.

Findings

The proposed ESSP model is solved optimally for 30 data sets to validate the proposed ESSP and is further demonstrated using three illustrations solved optimally in LINGO 10.

Originality/value

The ESSP model simultaneously minimizes total procurement cost and carbon emissions over the entire planning horizon considering uncertain demand, supplier and carrier capacity.

Details

Management of Environmental Quality: An International Journal, vol. 29 no. 3
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 9 August 2021

Anwar Zeb, Sunil Kumar, Almaz Tesfay and Anil Kumar

The purpose of this paper is to investigate the effects of irregular unsettling on the smoking model in form of the stochastic model as in the deterministic model these effects…

Abstract

Purpose

The purpose of this paper is to investigate the effects of irregular unsettling on the smoking model in form of the stochastic model as in the deterministic model these effects are neglected for simplicity.

Design/methodology/approach

In this research, the authors investigate a stochastic smoking system in which the contact rate is perturbed by Lévy noise to control the trend of smoking. First, present the formulation of the stochastic model and study the dynamics of the deterministic model. Then the global positive solution of the stochastic system is discussed. Further, extinction and the persistence of the proposed system are presented on the base of the reproductive number.

Findings

The authors discuss the dynamics of the deterministic smoking model form and further present the existence and uniqueness of non-negative global solutions for the stochastic system. Some previous study’s mentioned in the Introduction can be improved with the help of obtaining results, graphically present in this manuscript. In this regard, the authors present the sufficient conditions for the extinction of smoking for reproductive number is less than 1.

Research limitations/implications

In this work, the authors investigated the dynamic stochastic smoking model with non-Gaussian noise. The authors discussed the dynamics of the deterministic smoking model form and further showed for the stochastic system the existence and uniqueness of the non-negative global solution. Some previous study’s mentioned in the Introduction can be improved with the help of obtained results, clearly shown graphically in this manuscript. In this regard, the authors presented the sufficient conditions for the extinction of smoking, if <1, which can help in the control of smoking. Motivated from this research soon, the authors will extent the results to propose new mathematical models for the smoking epidemic in the form of fractional stochastic modeling. Especially, will investigate the effective strategies for control smoking throughout the world.

Originality/value

This study is helpful in the control of smoking throughout the world.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 March 2018

Vaibhav Chaudhary, Rakhee Kulshrestha and Srikanta Routroy

The purpose of this paper is to review and analyze the perishable inventory models along various dimensions such as its evolution, scope, demand, shelf life, replenishment policy…

2592

Abstract

Purpose

The purpose of this paper is to review and analyze the perishable inventory models along various dimensions such as its evolution, scope, demand, shelf life, replenishment policy, modeling techniques and research gaps.

Design/methodology/approach

In total, 418 relevant and scholarly articles of various researchers and practitioners during 1990-2016 were reviewed. They were critically analyzed along author profile, nature of perishability, research contributions of different countries, publication along time, research methodologies adopted, etc. to draw fruitful conclusions. The future research for perishable inventory modeling was also discussed and suggested.

Findings

There are plethora of perishable inventory studies with divergent objectives and scope. Besides demand and perishable rate in perishable inventory models, other factors such as price discount, allow shortage or not, inflation, time value of money and so on were found to be combined to make it more realistic. The modeling of inventory systems with two or more perishable items is limited. The multi-echelon inventory with centralized decision and information sharing is acquiring lot of importance because of supply chain integration in the competitive market.

Research limitations/implications

Only peer-reviewed journals and conference papers were analyzed, whereas the manuals, reports, white papers and blood-related articles were excluded. Clustering of literature revealed that future studies should focus on stochastic modeling.

Practical implications

Stress had been laid to identify future research gaps that will help in developing realistic models. The present work will form a guideline to choose the appropriate methodology(s) and mathematical technique(s) in different situations with perishable inventory.

Originality/value

The current review analyzed 419 research papers available in the literature on perishable inventory modeling to summarize its current status and identify its potential future directions. Also the future research gaps were uncovered. This systemic review is strongly felt to fill the gap in the perishable inventory literature and help in formulating effective strategies to design of an effective and efficient inventory management system for perishable items.

Details

Journal of Advances in Management Research, vol. 15 no. 3
Type: Research Article
ISSN: 0972-7981

Keywords

Article
Publication date: 5 March 2024

Maria Ghannoum, Joseph Assaad, Michel Daaboul and Abdulkader El-Mir

The use of waste polyethylene terephthalate (PET) plastics derived from shredded bottles in concrete is not formalized yet, especially in reinforced members such as beams and…

Abstract

Purpose

The use of waste polyethylene terephthalate (PET) plastics derived from shredded bottles in concrete is not formalized yet, especially in reinforced members such as beams and columns. The disposal of plastic wastes in concrete is a viable alternative to manage those wastes while minimizing the environmental impacts associated to recycling, carbon dioxide emissions and energy consumption.

Design/methodology/approach

This paper evaluates the suitability of 2D deterministic and stochastic finite element (FE) modeling to predict the shear strength behavior of reinforced concrete (RC) beams without stirrups. Different concrete mixtures prepared with 1.5%–4.5% PET additions, by volume, are investigated.

Findings

Test results showed that the deterministic and stochastic FE approaches are accurate to assess the maximum load of RC beams at failure and corresponding midspan deflection. However, the crack patterns observed experimentally during the different stages of loading can only be reproduced using the stochastic FE approach. This later method accounts for the concrete heterogeneity due to PET additions, allowing a statistical simulation of the effect of mechanical properties (i.e. compressive strength, tensile strength and Young’s modulus) on the output FE parameters.

Originality/value

Data presented in this paper can be of interest to civil and structural engineers, aiming to predict the failure mechanisms of RC beams containing plastic wastes, while minimizing the experimental time and resources needed to estimate the variability effect of concrete properties on the performance of such structures.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 5 May 2002

Richard L. Gallagher

A simulation methodology is applied to the loan loss reserve process of an agricultural lender. Weaknesses of the point‐estimate approach to estimating loan loss reserves are…

Abstract

A simulation methodology is applied to the loan loss reserve process of an agricultural lender. Weaknesses of the point‐estimate approach to estimating loan loss reserves are addressed with a “bottom‐up” model. Modeling includes consideration of the producer’s and the lender’s diversification efforts. Implementation of this model will provide the lender a better understanding of the institution’s portfolio risk, as well as the credit risk associated with each loan. This study compares the lender’s loan loss estimates to a distribution of losses with associated probabilities. The comparative results could provide the lender a basis for setting probability levels for determining the regulatory required level of loan loss reserve.

Details

Agricultural Finance Review, vol. 62 no. 1
Type: Research Article
ISSN: 0002-1466

Keywords

1 – 10 of over 14000