Search results

1 – 10 of over 2000
Article
Publication date: 17 October 2022

Jianbo Zhu, Qianqian Shi, Ce Zhang, Jingfeng Yuan, Qiming Li and Xiangyu Wang

Promoting low-carbon in the construction industry is important for achieving the overall low-carbon goals. Public–private partnership is very popular in public infrastructure…

Abstract

Purpose

Promoting low-carbon in the construction industry is important for achieving the overall low-carbon goals. Public–private partnership is very popular in public infrastructure projects. However, different perceptions of low-carbon and behaviors of public and private sectors can hinder the realization of low-carbon in these projects. In order to analyze the willingness of each stakeholder to cooperate towards low-carbon goals, an evolutionary game model is constructed.

Design/methodology/approach

An evolutionary game model that considers the opportunistic behavior of the participants is developed. The evolutionary stable strategies (ESSs) under different scenarios are examined, and the factors that influence the willingness to cooperate between the government and private investors are investigated.

Findings

The results illustrate that a well-designed system of profit distribution and subsidies can enhance collaboration. Excessive subsidies have negative impact on cooperation between the two sides, because these two sides can weaken income distribution and lead to the free-riding behavior of the government. Under the situation of two ESSs, there is also an optimal revenue distribution coefficient that maximizes the probability of cooperation. With the introduction of supervision and punishment mechanism, the opportunistic behavior of private investors is effectively constrained.

Originality/value

An evolutionary game model is developed to explore the cooperation between the public sector and the private sector in the field of low-carbon construction. Based on the analysis of the model, this paper summarizes the conditions and strategies that can enable the two sectors to cooperate.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 2
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 28 April 2023

Bashayer Merdef AlQashouti and Nasim Shah Shirazi

The purpose of this paper is to conduct a systematic literature review of research conducted in the economic Islamicity (EI) index field, in terms of non-Islamic countries.

Abstract

Purpose

The purpose of this paper is to conduct a systematic literature review of research conducted in the economic Islamicity (EI) index field, in terms of non-Islamic countries.

Design/methodology/approach

This study thoroughly assessed the literature on the EI index by conducting extensive systematic literature reviews.

Findings

The critical analysis of these indices shows the need for amendments, which can be achieved by improving the Islamicity index seen in non-Islamic countries. This step will help validate the Islamicity index assessment and help Islamic countries develop and strengthen Islamic economic values.

Originality/value

As the first comprehensive literature review in the Islamicity indices domain to the best of the authors’ knowledge, this research may contribute for Islamic country to increase the Islamicity index in terms of economic issue for future research themes.

Details

Journal of Islamic Accounting and Business Research, vol. 15 no. 2
Type: Research Article
ISSN: 1759-0817

Keywords

Article
Publication date: 5 February 2024

Prabir Barman, Srinivasa Rao Pentyala and B.V. Rathish Kumar

A porous cavity flow field generates entropy owing to energy and momentum exchange within the fluid and at solid barriers. The heat transport and viscosity effects on fluid and…

Abstract

Purpose

A porous cavity flow field generates entropy owing to energy and momentum exchange within the fluid and at solid barriers. The heat transport and viscosity effects on fluid and solid walls irreversibly generate entropy. This numerical study aims to investigate convective heat transfer together with entropy generation in a partially heated wavy porous cavity filled with a hybrid nanofluid.

Design/methodology/approach

The governing equations are nondimensionalized and the domain is transformed into a unit square. A second-order finite difference method is used to have numerical solutions to nondimensional unknowns such as stream function and temperature. This numerical computation is conducted to explore a wide range of regulating parameters, e.g. hybrid nano-particle volume fraction (σ = 0.1%, 0.33%, 0.75%, 1%, 2%), Rayleigh–Darcy number (Ra = 10, 102, 103), dimensionless length of the heat source (ϵ = 0.25, 0.50,1.0) and amplitude of the wave (a = 0.05, 0.10, 0.15) for a number of undulations (N = 1, 3) per unit length.

Findings

A thorough analysis is conducted to analyze the effect of multiple factors such as thermal convective forces, heat source, surface corrugation factors, nanofluid volume fraction and other parameters on entropy generation. The flow and temperature fields are studied through streamlines and isotherms. The average Bejan number suggested that entropy generation is entirely dominated by irreversibility due to heat transport at Ra = 10, and the irreversibility due to the viscosity effect is severe at Ra = 103, but the increment in s augments irreversibility due to the viscosity effect over the heat transport at Ra = 102.

Originality/value

To the best of the authors’ knowledge, this numerical study, for the first time, analyzes the influence of surface corrugation on the entropy generation related to the cooling of a partial heat source by the convection of a hybrid nanofluid.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 March 2024

Hicham Sbai, Ines Kahloul and Jocelyn Grira

This paper aims to examine the determinants of the dividend distribution policy in a banking setting.

Abstract

Purpose

This paper aims to examine the determinants of the dividend distribution policy in a banking setting.

Design/methodology/approach

Using a sample of 48 Islamic banks and 94 conventional banks from 15 Islamic countries over a period spanning from 2012 to 2019, we document the effect of board gender diversity, executive director profile and governance mechanisms on dividend payment decisions. We also analyze the moderating effect of Islamic banks on the relationship between gender diversity and dividend policy.

Findings

We find new evidence on the role of women directors in determining dividend distribution policy and confirm the risk aversion hypothesis, hence contributing to the ongoing debate on gender diversity literature. Our results show that the moderating role of Islamic banks is effective only for small banks.

Practical implications

Our findings have practical implications for shareholders, managers and financial analysts as they suggest rationalizing dividend distribution strategies.

Originality/value

Our study contributes to the growing body of knowledge on dividend policy, gender diversity and Islamic banks.

Details

The Journal of Risk Finance, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1526-5943

Keywords

Article
Publication date: 28 November 2023

M. Sankara Narayanan, P. Jeyadurga and S. Balamurali

The purpose of this paper is to design a modified version of the double sampling plan to handle the inspection processes requiring a minimum sample size to assure the median life…

Abstract

Purpose

The purpose of this paper is to design a modified version of the double sampling plan to handle the inspection processes requiring a minimum sample size to assure the median life for the products under the new Weibull–Pareto distribution. The economic design of the proposed plan is also considered to assure the product's lifetime with minimum cost.

Design/methodology/approach

The authors have developed an optimization model for obtaining the required plan parameters by solving simultaneously two non-linear inequalities and such inequalities have been formed based on the two points on the operating characteristic curve approach.

Findings

The results show that the average sample number, average total inspection and total inspection cost under the proposed plan are smaller than the same of a single sampling plan. This means that the proposed plan will be more efficient than a single sampling plan in reducing inspection effort and cost while providing the desired protection.

Originality/value

The proposed modified double sampling plan designed to assure the median life of the products under the new Weibull–Pareto distribution is not available in the literature. The proposed plan will be very useful in assuring the product median lifetime with minimum sample size as well as minimum cost in all the manufacturing industries.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 4 March 2024

Hillal M. Elshehabey, Andaç Batur Çolak and Abdelraheem Aly

The purpose of this study is to adapt the incompressible smoothed particle hydrodynamics (ISPH) method with artificial intelligence to manage the physical problem of double…

Abstract

Purpose

The purpose of this study is to adapt the incompressible smoothed particle hydrodynamics (ISPH) method with artificial intelligence to manage the physical problem of double diffusion inside a porous L-shaped cavity including two fins.

Design/methodology/approach

The ISPH method solves the nondimensional governing equations of a physical model. The ISPH simulations are attained at different Frank–Kamenetskii number, Darcy number, coupled Soret/Dufour numbers, coupled Cattaneo–Christov heat/mass fluxes, thermal radiation parameter and nanoparticle parameter. An artificial neural network (ANN) is developed using a total of 243 data sets. The data set is optimized as 171 of the data sets were used for training the model, 36 for validation and 36 for the testing phase. The network model was trained using the Levenberg–Marquardt training algorithm.

Findings

The resulting simulations show how thermal radiation declines the temperature distribution and changes the contour of a heat capacity ratio. The temperature distribution is improved, and the velocity field is decreased by 36.77% when the coupled heat Cattaneo–Christov heat/mass fluxes are increased from 0 to 0.8. The temperature distribution is supported, and the concentration distribution is declined by an increase in Soret–Dufour numbers. A rise in Soret–Dufour numbers corresponds to a decreasing velocity field. The Frank–Kamenetskii number is useful for enhancing the velocity field and temperature distribution. A reduction in Darcy number causes a high porous struggle, which reduces nanofluid velocity and improves temperature and concentration distribution. An increase in nanoparticle concentration causes a high fluid suspension viscosity, which reduces the suspension’s velocity. With the help of the ANN, the obtained model accurately predicts the values of the Nusselt and Sherwood numbers.

Originality/value

A novel integration between the ISPH method and the ANN is adapted to handle the heat and mass transfer within a new L-shaped geometry with fins in the presence of several physical effects.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 March 2024

Payman Sahbah Ahmed, Ava A.K. Mohammed and Fakhir Aziz Rasul Rozhbiany

The purpose of this study is to get benefits from manufacturing harmful wastes is by using them as a reinforcement with epoxy matrix composite materials to improve the damping…

Abstract

Purpose

The purpose of this study is to get benefits from manufacturing harmful wastes is by using them as a reinforcement with epoxy matrix composite materials to improve the damping characteristics in applications such as machine bases, rockets, satellites, missiles, navigation equipment and aircraft as large structures, and electronics as such small structures. Vibration causes damaging strains in these components.

Design/methodology/approach

By adding machining chips with weight percentages of 5, 10, 15 and 20 Wt.%, with three different chip lengths added for each percentage (0.6, 0.8 and 1.18 mm), the three-point bending and damping characteristics tests are utilized to examine how manufacturing waste impacts the mechanical properties. Following that, the optimal lengths and the chip-to-epoxy ratio are determined. The chip dispersion and homogeneity are assessed using a field emission scanning electron microscope.

Findings

Waste copper alloys can be used to enhance the vibration-dampening properties of epoxy resin. The interface and bonding between the resin and the chip are crucial for enhancing the damping capabilities of epoxy. Controlling the flexural modulus by altering the chip size and quantity can change the damping characteristics because the two variables are inversely related. The critical chip size is 0.8 mm, below which smaller chips cannot evenly transfer, and disperse the vibration force to the epoxy matrix and larger chips may shatter and fracture.

Originality/value

The main source of problems in machine tools, aircraft and vehicle manufacturing is vibrations generated in the structures. These components suffer harmful strains due to vibration. Damping can be added to these structures to get over these problems. The distribution of energy stored as a result of oscillatory mobility is known as damping. To optimize the serving lifetime of a dynamic suit, this is one of the most important design elements. The use of composites in construction is a modern method of improving a structure's damping capacity. Additionally, it has been demonstrated that composites offer better stiffness, strength, fatigue resistance and corrosion resistance. This research aims to reduce the vibration effect by using copper alloy wastes as dampers.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 April 2024

Jun Zhao, Hao Zhang, Junwei Liu, Yanfen Gong, Songqiang Wan, Long Liu, Jiacheng Li, Ziyi Song, Shiyao Zhang and Qingrui Li

Based on the weak seismic performance and low ductility of coupled shear walls, engineered cementitious composites (ECC) is utilized to strengthen it to solve the deformation…

Abstract

Purpose

Based on the weak seismic performance and low ductility of coupled shear walls, engineered cementitious composites (ECC) is utilized to strengthen it to solve the deformation problem in tall buildings more effectively and study its mechanical properties more deeply.

Design/methodology/approach

The properties of reinforced concrete coupled shear wall (RCCSW) and reinforced ECC coupled shear wall (RECSW) have been studied by numerical simulation, which is in good agreement with the experimental results. The reliability of the finite element model is verified. On this basis, a detailed parameter study is carried out, including the strength and reinforcement ratio of longitudinal rebar, the placement height of ECC in the wall limb and the position of ECC connecting beams. The study indexes include failure mode and the skeleton curve.

Findings

The results suggest that the bearing capacity of RECSW is significantly affected by the ratio of longitudinal rebar. When the ratio of longitudinal rebar increases from 0.47% to 3.35%, the bearing capacity of RECSW increases from 250 kN to 303 kN, an increase of 21%. The strength of longitudinal rebar has little influence on the bearing capacity of RECSW. When the strength of the longitudinal rebar increases, the bearing capacity of RECSW increases little. The failure mode of RECSW can be improved by lowering the casting height of the ECC beam in a certain range.

Originality/value

In this paper, ECC is used to strengthen the coupled shear wall, and the accuracy of the finite element model is verified from the failure mode and skeleton curve. On this basis, the casting height of the ECC casting wall limb, the strength and reinforcement ratio of longitudinal rebar and the position of the ECC beam are studied in detail.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 19 April 2024

Xiaotong Huang, Wentao Zhan, Chaowei Li, Tao Ma and Tao Hong

Green innovation in supply chains is crucial for socioeconomic development and stability. Factors that influence collaborative green innovation in the supply chain are complex and…

Abstract

Purpose

Green innovation in supply chains is crucial for socioeconomic development and stability. Factors that influence collaborative green innovation in the supply chain are complex and diverse. Exploring the main influencing factors and their mechanisms is essential for promoting collaborative green innovation in supply chains. Therefore, this study analyzes how upstream and downstream enterprises in the supply chain collaborate to develop green technological innovations, thereby providing a theoretical basis for improving the overall efficiency of the supply chain and advancing green innovation technology.

Design/methodology/approach

Based on evolutionary game theory, this study divides operational scenarios into pure market and government-regulated operations, thereby constructing collaborative green innovation relationships in different scenarios. Through evolutionary analysis of various entities in different operational scenarios, combined with numerical simulation analysis, we compared the evolutionary stability of collaborative green innovation behavior in supply chains with and without government regulation.

Findings

Under pure market mechanisms, the higher the green innovation capability, the stronger the willingness of various entities to collaborate in green innovation. However, under government regulation, a decrease in green innovation capability increases the willingness to collaborate with various entities. Environmental tax rates and green subsidy levels promote collaborative innovation in the short term but inhibit collaborative innovation in the long term, indicating that policy orientation has a short-term impact. Additionally, the greater the penalty for collaborative innovation breaches, the stronger the intention to engage in collaborative green innovation in the supply chain.

Originality/value

We introduce the factors influencing green innovation capability and social benefits in the study of the innovation behavior of upstream and downstream enterprises, expanding the research field of collaborative innovation in the supply chain. By comparing the collaborative innovation behavior of various entities in the supply chain under a pure market scenario and government regulations, this study provides a new perspective for analyzing the impact of corresponding government policies on the green innovation capability of upstream and downstream enterprises, enriching theoretical research on green innovation in the supply chain to some extent.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 17 May 2023

Abbas Rezaeian, Mona Mansoori and Amin Khajehdezfuly

Top-seat angle connection is known as one of the usual uncomplicated beam-to-column joints used in steel structures. This article investigates the fire performance of welded…

Abstract

Purpose

Top-seat angle connection is known as one of the usual uncomplicated beam-to-column joints used in steel structures. This article investigates the fire performance of welded top-seat angle connections.

Design/methodology/approach

A finite element (FE) model, including nonlinear contact interactions, high-temperature properties of steel, and material and geometric nonlinearities was created for accomplishing the fire performance analysis. The FE model was verified by comparing its simulation results with test data. Using the verified model, 24 steel-framed top-seat angle connection assemblies are modeled. Parametric studies were performed employing the verified FE model to study the influence of critical factors on the performance of steel beams and their welded angle joints.

Findings

The results obtained from the parametric studies illustrate that decreasing the gap size and the top angle size and increasing the top angles thickness affect fire behavior of top-seat angle joints and decrease the beam deflection by about 16% at temperatures beyond 570 °C. Also, the fire-resistance rating of the beam with seat angle stiffener increases about 15%, compared to those with and without the web stiffener. The failure of the beam happens when the deflections become more than span/30 at temperatures beyond 576 °C. Results also show that load type, load ratio and axial stiffness levels significantly control the fire performance of the beam with top-seat angle connections in semi-rigid steel frames.

Originality/value

Development of design methodologies for these joints and connected beam in fire conditions is delayed by current building codes due to the lack of adequate understanding of fire behavior of steel beams with welded top-seat angle connections.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of over 2000