Search results

1 – 5 of 5
Article
Publication date: 17 May 2023

Abbas Rezaeian, Mona Mansoori and Amin Khajehdezfuly

Top-seat angle connection is known as one of the usual uncomplicated beam-to-column joints used in steel structures. This article investigates the fire performance of welded…

Abstract

Purpose

Top-seat angle connection is known as one of the usual uncomplicated beam-to-column joints used in steel structures. This article investigates the fire performance of welded top-seat angle connections.

Design/methodology/approach

A finite element (FE) model, including nonlinear contact interactions, high-temperature properties of steel, and material and geometric nonlinearities was created for accomplishing the fire performance analysis. The FE model was verified by comparing its simulation results with test data. Using the verified model, 24 steel-framed top-seat angle connection assemblies are modeled. Parametric studies were performed employing the verified FE model to study the influence of critical factors on the performance of steel beams and their welded angle joints.

Findings

The results obtained from the parametric studies illustrate that decreasing the gap size and the top angle size and increasing the top angles thickness affect fire behavior of top-seat angle joints and decrease the beam deflection by about 16% at temperatures beyond 570 °C. Also, the fire-resistance rating of the beam with seat angle stiffener increases about 15%, compared to those with and without the web stiffener. The failure of the beam happens when the deflections become more than span/30 at temperatures beyond 576 °C. Results also show that load type, load ratio and axial stiffness levels significantly control the fire performance of the beam with top-seat angle connections in semi-rigid steel frames.

Originality/value

Development of design methodologies for these joints and connected beam in fire conditions is delayed by current building codes due to the lack of adequate understanding of fire behavior of steel beams with welded top-seat angle connections.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 14 July 2017

Amir Saedi Daryan and Mahmood Yahyai

This paper aims to predicting the behavior of welded angle connections (moment-rotation-temperature) in fire using artificial neural network 10.

Abstract

Purpose

This paper aims to predicting the behavior of welded angle connections (moment-rotation-temperature) in fire using artificial neural network 10.

Design/methodology/approach

An artificial neural networking model is described to predict the moment-rotation response of semi-rigid beam-to-column joints at elevated temperature.

Findings

Data from 47 experimental fire tests and verified finite element model are used for training and testing and validating the neural network models. The model’s predicted values are compared with actual test results. The results indicate that the models can predict the moment-rotation-temperature behavior of semi-rigid beam-to-column joints with very high accuracy. The developed model can be modified easily to investigate other parameters that influence the performance of joints in fire.

Originality/value

The results indicate that the models can predict the moment-rotation-temperature behavior of semi-rigid beam-to-column joints with very high accuracy. The developed model can be modified easily to investigate other parameters that influence the performance of joints in fire.

Details

Journal of Structural Fire Engineering, vol. 9 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 22 June 2017

Sana El Kalash and Elie Hantouche

This paper aims at developing a mechanical-based model for predicting the thermally induced axial forces and rotation of steel top and seat angles connections with and without web…

Abstract

Purpose

This paper aims at developing a mechanical-based model for predicting the thermally induced axial forces and rotation of steel top and seat angles connections with and without web angles subjected to elevated temperatures due to fire. Finite element (FE) simulations and experimental results are used to develop the mechanical model.

Design/methodology/approach

The model incorporates the overall connection and column-beam rotation of key component elements, and includes nonlinear behavior of bolts and base materials at elevated temperatures and some major geometric parameters that impact the behavior of such connections when exposed to fire. This includes load ratio, beam length, angle thickness, and gap distance. The mechanical model consists of multi-linear and nonlinear springs that predict each component stiffness, strength, and rotation.

Findings

The capability of the FE model to predict the strength of top and seat angles under fire loading was validated against full scale tests. Moreover, failure modes, temperature at failure, maximum compressive axial force, maximum rotation, and effect of web angles were all determined in the parametric study. Finally, the proposed mechanical model was validated against experimental results available in the literature and FE simulations developed as a part of this study.

Originality/value

The proposed model provides important insights into fire-induced axial forces and rotations and their implications on the design of steel bolted top and seat angle connections. The originality of the proposed mechanical model is that it requires low computational effort and can be used in more advanced modelling applications for fire analysis and design.

Details

Journal of Structural Fire Engineering, vol. 8 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 December 1963

THE high standards of examination and qualifications for membership set by the Institute of Incorporated Work Study Technologists can be seen in the new Prospectus just issued by…

Abstract

THE high standards of examination and qualifications for membership set by the Institute of Incorporated Work Study Technologists can be seen in the new Prospectus just issued by the Institute.

Details

Work Study, vol. 12 no. 12
Type: Research Article
ISSN: 0043-8022

Article
Publication date: 1 March 1939

S.D. Davies

THE last five years have seen enormous changes in the size and national importance of the British aircraft industry. From the position of Cinderella we have jumped overnight to…

Abstract

THE last five years have seen enormous changes in the size and national importance of the British aircraft industry. From the position of Cinderella we have jumped overnight to that of mother's darling of the longer suffering taxpayer; new schemes of factory expansion, for which the only recognized unit of currency appears to be £1,000,000, have been announced with almost startling frequency, but, nevertheless, it will be no infringement of the Official Secrets Acts to say that the increase in output has been very disappointing to the customer.

Details

Aircraft Engineering and Aerospace Technology, vol. 11 no. 3
Type: Research Article
ISSN: 0002-2667

1 – 5 of 5