Search results

1 – 10 of 48
Article
Publication date: 29 May 2020

Tianlun Huang, Zhiming Yang, Simian Diao, Zhigao Huang, Yun Zhang and Huamin Zhou

This study aims to investigate the effects of different surface-to-jet velocity ratios (Rsj) on the flow structure and the heat transfer of the floatation nozzle under different…

Abstract

Purpose

This study aims to investigate the effects of different surface-to-jet velocity ratios (Rsj) on the flow structure and the heat transfer of the floatation nozzle under different ratios (h/w) of the separation distance (h) to the slot width (w) and the differences of the flow structure and the heat transfer between the floatation nozzle and the slot nozzle.

Design/methodology/approach

The Nusselt number (Nu) and the pressure distribution of the floatation nozzle with a stationary wall are measured. Then the experimental results are used to validate the numerical model. Finally, a series of numerical simulations is carried out to achieve the purpose of this study.

Findings

The flow structure and heat transfer differences between the floatation nozzle and the slot nozzle are clarified. The floatation nozzle has more than 18 times the floatation ability of the unconfined slot nozzle. The Nu and pressure distributions of the floatation nozzle are experimentally measured. The effects of wall motion on the Nu and pressure distributions are identified.

Originality/value

The effects of the wall motion on the flow structure and the heat transfer of the floatation nozzle, and the differences between the floatation nozzle and the slot nozzle are first obtained. Therefore, it is valuable for engineers in engineering design of the floatation nozzle.

Details

Engineering Computations, vol. 38 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Content available
Article
Publication date: 1 February 2005

118

Abstract

Details

Disaster Prevention and Management: An International Journal, vol. 14 no. 1
Type: Research Article
ISSN: 0965-3562

Article
Publication date: 5 June 2023

Huiyi Xu, Zhiming Gao, Yang Yang and Wenbin Hu

The purpose of this study is to ensure the safe use of carbon fiber composite pressure vessels in the nuclear industry environment.

Abstract

Purpose

The purpose of this study is to ensure the safe use of carbon fiber composite pressure vessels in the nuclear industry environment.

Design/methodology/approach

This study investigated the degradation behaviors of carbon fiber reinforced composite (CFRP) using the specific corrosive media HF solution, with a focus on the damage to the surface epoxy layer. The degradation behaviors of CFRP in HF solution were examined by electrochemical methods and surface characterization, using HCl, NaCl and NaF solution for comparison.

Findings

The results showed that the specimen in HF solution will have a value of |Z|0.01 Hz one order of magnitude lower, a substantially lower contact angle, more breakage of the surface epoxy and the stronger O─H peak and weaker C─O─C peak in the Fourier transform infrared spectrum, indicating severe hydrolytic damage to the surface epoxy.

Originality/value

The work focuses on the degradation damage to CFRP surface epoxy by specific corrosive media HF.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Open Access
Article
Publication date: 9 May 2024

Yanhao Sun, Tao Zhang, Shuxin Ding, Zhiming Yuan and Shengliang Yang

In order to solve the problem of inaccurate calculation of index weights, subjectivity and uncertainty of index assessment in the risk assessment process, this study aims to…

Abstract

Purpose

In order to solve the problem of inaccurate calculation of index weights, subjectivity and uncertainty of index assessment in the risk assessment process, this study aims to propose a scientific and reasonable centralized traffic control (CTC) system risk assessment method.

Design/methodology/approach

First, system-theoretic process analysis (STPA) is used to conduct risk analysis on the CTC system and constructs risk assessment indexes based on this analysis. Then, to enhance the accuracy of weight calculation, the fuzzy analytical hierarchy process (FAHP), fuzzy decision-making trial and evaluation laboratory (FDEMATEL) and entropy weight method are employed to calculate the subjective weight, relative weight and objective weight of each index. These three types of weights are combined using game theory to obtain the combined weight for each index. To reduce subjectivity and uncertainty in the assessment process, the backward cloud generator method is utilized to obtain the numerical character (NC) of the cloud model for each index. The NCs of the indexes are then weighted to derive the comprehensive cloud for risk assessment of the CTC system. This cloud model is used to obtain the CTC system's comprehensive risk assessment. The model's similarity measurement method gauges the likeness between the comprehensive risk assessment cloud and the risk standard cloud. Finally, this process yields the risk assessment results for the CTC system.

Findings

The cloud model can handle the subjectivity and fuzziness in the risk assessment process well. The cloud model-based risk assessment method was applied to the CTC system risk assessment of a railway group and achieved good results.

Originality/value

This study provides a cloud model-based method for risk assessment of CTC systems, which accurately calculates the weight of risk indexes and uses cloud models to reduce uncertainty and subjectivity in the assessment, achieving effective risk assessment of CTC systems. It can provide a reference and theoretical basis for risk management of the CTC system.

Details

Railway Sciences, vol. 3 no. 3
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 26 September 2019

Di Yang and Zhiming Gao

A finite volume scheme for diffusion equations on non-rectangular meshes is proposed in [Deyuan Li, Hongshou Shui, Minjun Tang, J. Numer. Meth. Comput. Appl., 1(4)(1980)217–224…

Abstract

Purpose

A finite volume scheme for diffusion equations on non-rectangular meshes is proposed in [Deyuan Li, Hongshou Shui, Minjun Tang, J. Numer. Meth. Comput. Appl., 1(4)(1980)217–224 (in Chinese)], which is the so-called nine point scheme on structured quadrilateral meshes. The scheme has both cell-centered unknowns and vertex unknowns which are usually expressed as a linear weighted interpolation of the cell-centered unknowns. The critical factor to obtain the optimal accuracy for the scheme is the reconstruction of vertex unknowns. However, when the mesh deformation is severe or the diffusion tensor is discontinuous, the accuracy of the scheme is not satisfactory, and the author hope to improve this scheme.

Design/methodology/approach

The authors propose an explicit weighted vertex interpolation algorithm which allows arbitrary diffusion tensors and does not depend on the location of discontinuity. Both the derivation of the scheme and that of vertex reconstruction algorithm satisfy the linearity preserving criterion which requires that a discretization scheme should be exact on linear solutions. The vertex interpolation algorithm can be easily extended to 3 D case.

Findings

Numerical results show that it maintain optimal convergence rates for the solution and flux on 2 D and 3 D meshes in case that the diffusion tensor is taken to be anisotropic, at times heterogeneous, and/or discontinuous.

Originality/value

This paper proposes a linearity preserving and explicit weighted vertex interpolation algorithm for cell-centered finite volume approximations of diffusion equations on general grids. The proposed finite volume scheme with the new interpolation algorithm allows arbitrary continuous or discontinuous diffusion tensors; the final scheme is applicable to arbitrary polygonal grids, which may have concave cells or degenerate ones with hanging nodes. The final scheme has second-order convergence rate for the approximate solution and higher than first-order accuracy for the flux on 2 D and 3 D meshes. The explicit weighted interpolation algorithm is easy to implement in three dimensions in case that the diffusion tensor is continuous or discontinuous.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 November 2023

Xiaodi Xu, Shanchao Sun, Yang Fei, Liubin Niu, Xinyu Tian, Zaitian Ke, Peng Dai and Zhiming Liang

This article aims to predict the rapid track geometry change in the short term with a higher detection frequency, and realize the monitoring and maintenance of the railway state.

Abstract

Purpose

This article aims to predict the rapid track geometry change in the short term with a higher detection frequency, and realize the monitoring and maintenance of the railway state.

Design/methodology/approach

Firstly, the ABA data needs to be filtered to remove the DC component to reduce the drift due to integration. Secondly, the quadratic integration in frequency domain for concern components of the vertical and lateral ABA needs to be done. Thirdly, the displacement in lateral of the wheelset to rail needs to be calculated. Then the track alignment irregularity needs to be calculated by the integration of lateral ABA and the lateral displacement of the wheelset to rail.

Findings

By comparing with a commercial track geometry measurement system, the high-speed railway application results in different conditions, after removal of the influence of LDWR, identified that the proposed method can produce a satisfactory result.

Originality/value

This article helps realize detection of track irregularity on operating vehicle, reduce equipment production, installation and maintenance costs and improve detection density.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 November 2019

Guanying Huo, Xin Jiang, Zhiming Zheng and Deyi Xue

Metamodeling is an effective method to approximate the relations between input and output parameters when significant efforts of experiments and simulations are required to…

Abstract

Purpose

Metamodeling is an effective method to approximate the relations between input and output parameters when significant efforts of experiments and simulations are required to collect the data to build the relations. This paper aims to develop a new sequential sampling method for adaptive metamodeling by using the data with highly nonlinear relation between input and output parameters.

Design/methodology/approach

In this method, the Latin hypercube sampling method is used to sample the initial data, and kriging method is used to construct the metamodel. In this work, input parameter values for collecting the next output data to update the currently achieved metamodel are determined based on qualities of data in both the input and output parameter spaces. Uniformity is used to evaluate data in the input parameter space. Leave-one-out errors and sensitivities are considered to evaluate data in the output parameter space.

Findings

This new method has been compared with the existing methods to demonstrate its effectiveness in approximation. This new method has also been compared with the existing methods in solving global optimization problems. An engineering case is used at last to verify the method further.

Originality/value

This paper provides an effective sequential sampling method for adaptive metamodeling to approximate highly nonlinear relations between input and output parameters.

Details

Engineering Computations, vol. 37 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 July 2024

Zhen Tian, Tauchid Komara Yuda and Zhiming Hu

This article focuses on the continuity and changes in the Productive Welfare Regimes and investigates how the COVID-19 pandemic and population ageing can influence the established…

Abstract

Purpose

This article focuses on the continuity and changes in the Productive Welfare Regimes and investigates how the COVID-19 pandemic and population ageing can influence the established systems in Hong Kong, South Korea, Singapore and Taiwan.

Design/methodology/approach

Our research is based on document review, investigating intricate situations with numerous aspects and providing an excellent opportunity for innovation and examining theoretical presumptions in welfare regime theory, as well as exploring the complicated policy trajectories that varies among cases.

Findings

Our findings reveal that social policy responses to COVID-19 have been characterized by adopting the market-conforming role of social policy for the elderly. This is shown by many policy measures focusing on self-sufficiency and an active labour market, signalling that the COVID-19 pandemic and population ageing pressure here are viewed as an economic issue over social rights. The economic-first was adopted to maintain their proximity to the global economy as key sources of their social policy development. We can conclude by emphasizing that the responses to COVID-19 have exposed deficiencies in certain existing social policies. Yet, they have not been sufficient to catalyse substantial policy changes across domains where such change had not already been initiated, thus allowing welfare regimes to remain within productivist boundaries.

Originality/value

This study responds to the current debate on the welfare regime continuity and adaptation in East Asia and suggests a new perspective of policy process in the times of insecurity.

Details

International Journal of Sociology and Social Policy, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0144-333X

Keywords

Article
Publication date: 11 June 2018

Bing Hua, Lin Chen, Yunhua Wu and Zhiming Chen

The three-axis simulator relies on the air film between the air bearing and the bearing seat to achieve weightlessness and the frictionless motion condition, which is essential…

Abstract

Purpose

The three-axis simulator relies on the air film between the air bearing and the bearing seat to achieve weightlessness and the frictionless motion condition, which is essential for simulating the micro-disturbance torque of a satellite in outer space. However, at the beginning of the experiment, the disturbance torque caused by the misalignment between the center of gravity of the simulator and the center of rotation of the bearing is the most important factor restricting the use of the space three-axis simulator. In order to solve this problem, it is necessary to set the balance adjustment system on the simulator to compensate the disturbance torque caused by the eccentricity. The paper aims to discuss these issues.

Design/methodology/approach

In this paper, a study of L1 adaptive automatic balancing control method for micro satellite with motor without other actuators is proposed. L1 adaptive control algorithm adds the low-pass filter to the control law, which in a certain sense to reduce the high-frequency signal and speed up the response time of the controlled system. At the same time, by estimating the adaptive parameter uncertainty in object, the output error of the state predictor and the controlled object can be stabilized under Lyapunov condition, and the robustness of the system is also improved. The automatic balancing method of PID is also studied in this paper.

Findings

Through this automatic balancing mechanism, the gravity disturbance torque can be effectively reduced down to 10−6 Nm, and the automatic balancing time can be controlled within 7 s.

Originality/value

This paper introduces an automatic balancing mechanism. The experimental results show that the mechanism can greatly improve the convergence speed while guaranteeing the control accuracy, and ensuring the feasibility of the large angle maneuver of spacecraft three-axis simulator.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 11 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 12 April 2022

Jingbo Zhao, Yan Tao and Zhiming Sun

This paper aims to clarify voltage sourced converter’s (VSC’s) influence rules on the alternating current (AC) short-circuit current and identify the key factors, so as to propose…

153

Abstract

Purpose

This paper aims to clarify voltage sourced converter’s (VSC’s) influence rules on the alternating current (AC) short-circuit current and identify the key factors, so as to propose the short-circuit current suppression strategy.

Design/methodology/approach

This paper investigates the key factors which impact the short-circuit current supplied by the VSC based on the equivalent current source model. This study shows that the phase of the VSC equivalent current source is mainly affected by the type of fault, whereas the amplitude is mainly decided by the control mode, the amplitude limiter and the electrical distance. Based on the above influence mechanism, the dynamic limiter with short-circuit current limiting function is designed. The theoretical analysis is verified by simulations on PSCAD.

Findings

The short-circuit current feeding from VSC is closely related to the control mode and control parameters of the VSC, fault type at AC side and the electrical distance of the fault point. The proposed dynamic limiter can make VSC absorb more reactive power to suppress the short-circuit current.

Research limitations/implications

The dynamic limiter proposed in this paper is limited to suppress three-phase short-circuit fault current. The future work will focus more on improving and extending the dynamic limiter to the fault current suppression application in other fault scenarios.

Practical implications

The research results provide a reference for the design of protection system.

Originality/value

The key influence factors are conducive to put forward the measures to suppress the fault current, eliminate the risk of short-circuit current exceeding the standard and reduce the difficulty of protection design.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 10 of 48