Search results

1 – 10 of 355
Article
Publication date: 11 June 2018

Bing Hua, Lin Chen, Yunhua Wu and Zhiming Chen

The three-axis simulator relies on the air film between the air bearing and the bearing seat to achieve weightlessness and the frictionless motion condition, which is essential…

Abstract

Purpose

The three-axis simulator relies on the air film between the air bearing and the bearing seat to achieve weightlessness and the frictionless motion condition, which is essential for simulating the micro-disturbance torque of a satellite in outer space. However, at the beginning of the experiment, the disturbance torque caused by the misalignment between the center of gravity of the simulator and the center of rotation of the bearing is the most important factor restricting the use of the space three-axis simulator. In order to solve this problem, it is necessary to set the balance adjustment system on the simulator to compensate the disturbance torque caused by the eccentricity. The paper aims to discuss these issues.

Design/methodology/approach

In this paper, a study of L1 adaptive automatic balancing control method for micro satellite with motor without other actuators is proposed. L1 adaptive control algorithm adds the low-pass filter to the control law, which in a certain sense to reduce the high-frequency signal and speed up the response time of the controlled system. At the same time, by estimating the adaptive parameter uncertainty in object, the output error of the state predictor and the controlled object can be stabilized under Lyapunov condition, and the robustness of the system is also improved. The automatic balancing method of PID is also studied in this paper.

Findings

Through this automatic balancing mechanism, the gravity disturbance torque can be effectively reduced down to 10−6 Nm, and the automatic balancing time can be controlled within 7 s.

Originality/value

This paper introduces an automatic balancing mechanism. The experimental results show that the mechanism can greatly improve the convergence speed while guaranteeing the control accuracy, and ensuring the feasibility of the large angle maneuver of spacecraft three-axis simulator.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 11 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 7 December 2018

Tianyu Ren, Yunfei Dong, Dan Wu and Ken Chen

The purpose of this paper is to present a simple yet effective force control scheme for collaborative robots by addressing the problem of disturbance rejection in joint torque

Abstract

Purpose

The purpose of this paper is to present a simple yet effective force control scheme for collaborative robots by addressing the problem of disturbance rejection in joint torque: inherent actuator flexibility and nonlinear friction.

Design/methodology/approach

In this paper, a joint torque controller with an extended state observer is used to decouple the joint actuators from the multi-rigid-body system of a constrained robot and compensate the motor friction. Moreover, to realize robot force control, the authors embed this controller into the impedance control framework.

Findings

Results have been given in simulations and experiments in which the proposed joint torque controller with an extended state observer can effectively estimate and compensate the total disturbance. The overall control framework is analytically proved to be stable, and further it is validated in experiments with a robot testbed.

Practical implications

With the proposed robot force controller, the robot is able to change its stiffness in real time and therefore take variable tasks without any accessories, such as the RCC or 6-DOF F/T sensor. In addition, programing by demonstration can be realized easily within the proposed framework, which makes the robot accessible to unprofessional users.

Originality/value

The main contribution of the presented work is the design of a model-free robot force controller with the ability to reject torque disturbances from robot-actuator coupling effect and motor friction, applicable for both constrained and unconstrained environments. Simulation and experiment results from a 7-DOF robot are given to show the effectiveness and robustness of the proposed controller.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 28 December 2017

Jian-jun Yuan, Shuai Wang, Weiwei Wan, Yanxue Liang, Luo Yang and Yifan Liu

The aim of this paper is to implement direct teaching of industrial manipulators using current sensors. The traditional way to implement teaching is either to use a teaching…

Abstract

Purpose

The aim of this paper is to implement direct teaching of industrial manipulators using current sensors. The traditional way to implement teaching is either to use a teaching pedant, which is time consuming, or use force sensors, which increases system cost. To overcome these disadvantages, a novel method is explored in the paper by using current sensors installed at joints as torque observers.

Design/methodology/approach

The method uses current sensors installed at each joint of a manipulator as torque observers and estimates external forces from differences between joint-driven torque computed based on the values of current sensors and commanded values of motor-driven torque. The joint-driven torque is computed by cancelling out both pre-calibrated gravity and friction resistance (compensation). Also, to make the method robust, the paper presents a strategy to detect unexpected slowly drifts and zero external forces and stop the robot in those situations.

Findings

Experimental results demonstrated that compensating the joint torques using both pre-calibrated gravity and friction resistance has performance comparable to a force sensor installed on the end effector of a manipulator. It is possible to implement satisfying direct teaching without using force sensors on 7 degree of freedom manipulators with large mass and friction resistance.

Originality/value

The main contribution of the paper is that the authors cancel out both pre-calibrated gravity and friction resistance to improve the direct teaching using only current sensors; they develop methods to avoid unsafe situations like slow drifts. The method will benefit industrial manipulators, especially those with large mass and friction resistance, to realize flexible and reliable direct teaching.

Details

Assembly Automation, vol. 38 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 15 October 2018

Xiaobin Lian, Jiafu Liu, Chuang Wang, Tiger Yuan and Naigang Cui

The purpose of this paper is to resolve complex nonlinear dynamical problems of the pitching axis of solar sail in body coordinate system compared with inertial coordinate system…

Abstract

Purpose

The purpose of this paper is to resolve complex nonlinear dynamical problems of the pitching axis of solar sail in body coordinate system compared with inertial coordinate system. And saturation condition of controlled torque of vane in the orbit with big eccentricity ration, uncertainty and external disturbance under complex space background are considered.

Design/methodology/approach

The pitch dynamics of the sailcraft in the prescribed elliptic earth orbits is established considering the torques by the control vanes, gravity gradient and offset between the center-of-mass (cm) and center-of-pressure (cp). The maximal torques afforded by the control vanes are numerically determined for the sailcraft at any position with any pitch angle, which will be used as the restriction of the attitude control torques. The finite/infinite time adaptive sliding mode saturation controller and Bang–Bang–Radial Basis Function (RBF) controller are designed for the sailcraft with restricted attitude control torques. The model uncertainty and the input error (the error between real input and ideal control law input) are solved using the RBF network.

Findings

The finite true anomaly adaptive sliding mode saturation controller performed better than the other two controllers by comparing the numerical results in the paper. The control torque saturation, the model uncertainty and the external disturbance were also effectively solved using the infinite and finite time adaptive sliding mode saturation controllers by analyzing the numerical simulations. The stabilization of the pitch motion was accomplished within half orbit period.

Practical implications

The complex accurate dynamics can be approximated using the RBF network. The controllers can be applied to stabilization of spacecraft attitude dynamics with uncertainties in complex space environment.

Originality/value

Advanced control method is used in this paper; saturation of controlled torque of vane is resolved when the orbit with big eccentricity ration is considered and uncertainty and external disturbance under complex space background are settled. Moreover, complex and accurate nonlinear dynamical model of pitching axis of solar sail in body coordinate system compared with inertial coordinate system is provided.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 June 2022

Qiang Liu, Shicai Shi, Minghe Jin, Shaowei Fan and Hong Liu

This study aims to design a controller which can improve the end-effector low-frequency chattering resulting from the measurement noise and the time delay in the on-orbit tasks…

Abstract

Purpose

This study aims to design a controller which can improve the end-effector low-frequency chattering resulting from the measurement noise and the time delay in the on-orbit tasks. The rendezvous point will move along the rendezvous ring owing to the error of the camera, and the manipulators’ collision need be avoided. In addition, owing to the dynamics coupling, the manipulators’ motion will disturb the spacecraft, and the low tracking accuracy of the end-effector needs to be improved.

Design/methodology/approach

This paper proposes a minimum disturbance controller based on the synchronous and adaptive acceleration planning to improve the tracking error and the disturbance energy. The synchronous and adaptive acceleration planning method plans the optimal rendezvous point and designs synchronous approaching method and provides an estimation method of the rendezvous point acceleration. A minimum disturbance controller is designed based on the energy conservation to optimize the disturbance resulting from the manipulator’s motion.

Findings

The acceleration planning method avoids the collision of two end-effectors and reduces the error caused by the low-frequency chattering. The minimum disturbance controller minimizes the disturbance energy of the manipulators’ motion transferred to the spacecraft. Experiment results show that the proposed method improves the low-frequency chattering, and the average position tracking error reduces by 30%, and disturbance energy reduces by 30% at least. In addition, it has good performances in the synchronous motion and adaptive tracking.

Originality/value

Given the immeasurability of the target satellite acceleration in space, this paper proposes an estimation method of the acceleration. This paper proposes a synchronous and adaptive acceleration planning method. In addition, the rendezvous points are optimized to avoid the two end-effectors collisions. By the energy conservation, the minimum disturbance controller is designed to ensure a satisfying tracking error and reduce the disturbance energy resulting from the manipulators’ motion.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 22 July 2019

Liming Gao, Jianjun Yuan and Yingjie Qian

The purpose of this paper is to design a practical direct teaching method for the industrial robot with large friction resistance and gravity torque but without expensive force…

Abstract

Purpose

The purpose of this paper is to design a practical direct teaching method for the industrial robot with large friction resistance and gravity torque but without expensive force/torque sensor, where the gravity torque is just a function of joints position, whereas the friction is closely associated with joint velocity, temperature and load.

Design/methodology/approach

In the teaching method, the output torque of joint motor is controlled through current to compensate gravity torque completely and friction resistance incompletely. Three variables closely associated with friction are investigated separately by experiment and theoretical analysis, and then a comprehensive friction model which is used to calculate the required compensated friction torque is proposed. Finally, a SIASUN 7 degrees of freedom robot was used to verify the model and the method.

Findings

Experimental results demonstrated that the teaching method enables an operator to teach the robot in joint space by applying small force and torque on either end-effector or its body. The friction investigation suggests that the velocity and temperature have a strong nonlinear influence on viscous friction, whereas load torque significantly influences the Coulomb friction linearly and causes a slight Stribeck effect.

Originality/value

The main contribution includes the following: a practical joint space direct teaching method for a common industrial robot is developed, and a friction model capturing velocity, temperature and load for robot joints equipped with commercialized motors and harmonic drives is proposed.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 27 May 2022

Yuliang Guo, Jianwei Niu, Renluan Hou, Tao Ren, Bing Han, Xiaolong Yu and Qun Ma

Sensorless passive lead-through programming (LTP) is a promising physical human-robot interaction technology that enables manual trajectory demonstrations based on gravity and…

Abstract

Purpose

Sensorless passive lead-through programming (LTP) is a promising physical human-robot interaction technology that enables manual trajectory demonstrations based on gravity and friction compensation. The major difficulty lies in static friction compensation during LTP start-up. Instead of static friction compensation, conventional methods only compensate for Coulomb friction after the joint velocity exceeds a threshold. Therefore, conventional start-up external torques must overcome static friction. When the static friction is considerable, it is difficult for conventional LTP to start up and make small movements. This paper aims to decrease the start-up external torque and improve the small movement performance.

Design/methodology/approach

This paper reveals a novel usage of a high-gain position-loop in industrial robot applications aimed at sensitively detecting external torque during start-up. Then, the static friction is partly compensated by Coulomb friction to facilitate start-up. In addition, a detailed transition method between the proposed start-up and conventional passive LTP is proposed based on a finite state machine.

Findings

Experiments are implemented on the ROKAE XB4 robot to verify the effectiveness of the proposed external torque detection. Compared with the conventional LTP method, the proposed LTP method significantly decreases the start-up external torque and facilitates small movements.

Originality/value

This paper proposes and verifies a novel start-up method of sensorless LTP based on a start-up external torque detection and a transition method between start-up and conventional LTP. This research improves the LTP start-up performance, especially for industrial robots with large static friction.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 14 October 2020

Yew-Chung Chak, Renuganth Varatharajoo and Nima Assadian

The paper aims to address the combined attitude control and Sun tracking problem in a flexible spacecraft in the presence of external and internal disturbances. The attitude…

Abstract

Purpose

The paper aims to address the combined attitude control and Sun tracking problem in a flexible spacecraft in the presence of external and internal disturbances. The attitude stabilization of a flexible satellite is generally a challenging control problem, because of the facts that satellite kinematic and dynamic equations are inherently nonlinear, the rigid–flexible coupling dynamical effect, as well as the uncertainty that arises from the effect of actuator anomalies.

Design/methodology/approach

To deal with these issues in the combined attitude and Sun tracking system, a novel control scheme is proposed based on the adaptive fuzzy Jacobian approach. The augmented spacecraft model is then analyzed and the Lyapunov-based backstepping method is applied to develop a nonlinear three-axis attitude pointing control law and the adaptation law.

Findings

Numerical results show the effectiveness of the proposed adaptive control scheme in simultaneously tracking the desired attitude and the Sun.

Practical implications

Reaction wheels are commonly used in many spacecraft systems for the three-axis attitude control by delivering precise torques. If a reaction wheel suffers from an irreversible mechanical breakdown, then it is likely going to interrupt the mission, or even leading to a catastrophic loss. The pitch-axis mounted solar array drive assemblies (SADAs) can be exploited to anticipate such situation to generate a differential torque. As the solar panels are rotated by the SADAs to be orientated relative to the Sun, the pitch-axis wheel control torque demand can be compensated by the differential torque.

Originality/value

The proposed Jacobian control scheme is inspired by the knowledge of Jacobian matrix in the trajectory tracking of robotic manipulators.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 14 August 2021

Huayi Li, Qingxian Jia, Rui Ma and Xueqin Chen

The purpose of this paper is to accomplish robust actuator fault isolation and identification for microsatellite attitude control systems (ACSs) subject to a series of space…

Abstract

Purpose

The purpose of this paper is to accomplish robust actuator fault isolation and identification for microsatellite attitude control systems (ACSs) subject to a series of space disturbance torques and gyro drifts.

Design/methodology/approach

For the satellite attitude dynamics with Lipschitz constraint, a multi-objective nonlinear unknown input observer (NUIO) is explored to accomplish robust actuator fault isolation based on a synthesis of Hinf techniques and regional pole assignment technique. Subsequently, a novel disturbance-decoupling learning observer (D2LO) is proposed to identify the isolated actuator fault accurately. Additionally, the design of the NUIO and the D2LO are reformulated into convex optimization problems involving linear matrix inequalities (LMIs), which can be readily solved using standard LMI tools.

Findings

The simulation studies on a microsatellite example are performed to prove the effectiveness and applicability of the proposed robust actuator fault isolation and identification methodologies.

Practical implications

This research includes implications for the enhancement of reliability and safety of on-orbit microsatellites.

Originality/value

This study proposes novel NUIO-based robust fault isolation and D2LO-based robust fault identification methodologies for spacecraft ACSs subject to a series of space disturbance torques and gyro drifts.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 May 2013

Haizhao Liang, Zhaowei Sun and Jianying Wang

This paper aims to investigate the fast attitude coordinated control problem for rigid satellite swarms with communication delays.

Abstract

Purpose

This paper aims to investigate the fast attitude coordinated control problem for rigid satellite swarms with communication delays.

Design/methodology/approach

Based on behavior‐based control approach, the attitude control system is designed to guarantee that the attitude of the satellite swarm converge to a dynamic reference state in finite time. A fast sliding mode is developed to improve the convergence rate and robustness of the control system. All the effects of communication delays, parameter uncertainties and external disturbances are taken into account simultaneously, and the communication topology of the satellite swarm can be arbitrary types. Numerical simulations are provided to demonstrate the analytic results.

Findings

Despite the existence of communication delays, parameter uncertainties and external disturbances, the stability of the closed‐loop system can be successfully guaranteed and the proposed control strategies are effective to overcome these unexpected phenomena subject to arbitrary communication topology.

Originality/value

This paper introduces a fast terminal sliding mode control method which can guarantee the fast convergence of the attitude state of the satellite swarm in the presence of communication delays, switched communication topology, parameter uncertainties and external disturbances.

Details

Aircraft Engineering and Aerospace Technology, vol. 85 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of 355