Search results

1 – 10 of 25
Article
Publication date: 27 November 2020

Mingwei Lin, Yanqiu Chen and Riqing Chen

The purpose of this paper is to make a comprehensive analysis of 354 publications about Pythagorean fuzzy sets (PFSs) from 2013 to 2020 in order to comprehensively understand…

Abstract

Purpose

The purpose of this paper is to make a comprehensive analysis of 354 publications about Pythagorean fuzzy sets (PFSs) from 2013 to 2020 in order to comprehensively understand their historical progress and current situation, as well as future development trend.

Design/methodology/approach

First, this paper describes the fundamental information of these publications on PFSs, including their data information, annual trend and prediction and basic features. Second, the most productive and influential authors, countries/regions, institutions and the most cited documents are presented in the form of evaluation indicators. Third, with the help of VOSviewer software, the visualization analysis is conducted to show the development status of PFSs publications at the level of authors, countries/regions, institutions and keywords. Finally, the burst detection of keywords, timezone review and timeline review are exported from CiteSpace software to analyze the hotspots and development trend on PFSs.

Findings

The annual PFSs publications present a quickly increasing trend. The most productive author is Wei Guiwu (China). Wei Guiwu and Wei Cun have the strongest cooperative relationship.

Research limitations/implications

The implication of this study is to provide a comprehensive perspective for the scholars who take a fancy to PFSs, and it is valuable for scholars to grasp the hotspots in this field in time.

Originality/value

It is the first paper that uses the bibliometric analysis to comprehensively analyze the publications on PFSs. It can help the scholars in the field of PFSs to quickly understand the development status and trend of PFSs.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 14 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Open Access
Article
Publication date: 17 June 2024

Wenzhen Yang, Yu Liu, Jinghua Chen, Yanqiu Chen and Erwei Shang

This paper endeavors to create a predictive model for the energy consumption associated with the multi-material fused deposition modeling (FDM) printing process.

Abstract

Purpose

This paper endeavors to create a predictive model for the energy consumption associated with the multi-material fused deposition modeling (FDM) printing process.

Design/methodology/approach

An online measurement system for monitoring power and temperature has been integrated into the dual-extruder FDM printer. This system enables a comprehensive study of energy consumption during the dual-material FDM printing process, achieved by breaking down the entire dual-material printing procedure into distinct operational modes. Concurrently, the analysis of the G-code related to the dual-material FDM printing process is carried out.

Findings

This work involves an investigation of the execution instructions that delineate the tooling plan for FDM. We measure and simulate the nozzle temperature distributions with varying filament materials. In our work, we capture intricate details of energy consumption accurately, enabling us to predict fluctuations in power demand across different operational phases of multi-material FDM 3D printing processes.

Originality/value

This work establishes a model for quantifying the energy consumption of the dual-material FDM printing process. This model carries significant implications for enhancing the design of 3D printers and advancing their sustainability in mobile manufacturing endeavors.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 12 October 2018

Xiaowei Zhu, Yanqiu Chen, Yu Liu, Yongqiang Deng, Changyu Tang, Weilian Gao, Jun Mei, Junhua Zhao, Tong Liu and Jian Yang

The purpose of this paper is to provide additive manufacturing-based solutions for preparation of elastomeric foam with broaden compressive stress plateau.

Abstract

Purpose

The purpose of this paper is to provide additive manufacturing-based solutions for preparation of elastomeric foam with broaden compressive stress plateau.

Design/methodology/approach

Mechanic models are developed for obtaining designs of foam cell units with enhanced elastic buckling. An experimental approach is taken to fabricate the foams based on direct ink writing technique. Experimental and simulation data are collected to assist understanding of our proposals and solutions.

Findings

A simple tetragonal structured elastomeric foam is proposed and fabricated by direct ink writing, in which its cell unit is theoretically designed by repeating every four filament layers. The foam exhibits a broader stress plateau, because of the pronounced elastic buckling under compressive loading as predicted by the authors’ mechanic modeling. A two-stage stress plateaus as observed in the foam, being attributed to the dual elastic buckling of the cell units along two lateral directions of the XY plane during compression.

Research limitations/implications

Future work should incorporate more microscopic parameters to tune the elastomeric foam for mechanic performance testing on linear elastic deformation and densification of polymer matrix.

Practical implications

Additive manufacturing offers an alternative to fabricate elastomeric foam with controlled cell unit design and therefore mechanics. Our results comment on its broad space for development such superior cushioning or damping material in the fields of vibration and energy absorption.

Originality/value

This work has contributed to new knowledge on preparation of high performance elastomeric foam by providing a better understanding on its cell structure, being printed using direct ink writing machines.

Details

Rapid Prototyping Journal, vol. 24 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 April 2015

Yanqiu Chen, Xiaodong Zhou, Taolin Zhang, Yuqi Hu and Lizhong Yang

– The purpose of this paper is to study the behavior of smoke flow in a typical high-rise residential building fire in six common smoke control systems.

Abstract

Purpose

The purpose of this paper is to study the behavior of smoke flow in a typical high-rise residential building fire in six common smoke control systems.

Design/methodology/approach

The pressure, temperature and CO2 concentration were used to trace the motion of turbulent smoke flow through CFD.

Findings

It is found that the hot smoke could rise up and spread into the indoor space on the upper floors through the staircase. When the pressure in the evacuation staircase is higher, it would be more difficult for the smoke to enter the staircase and transport vertically. On the other hand, the smoke would soon transport to the indoor space on the upper floors horizontally. During this process, the smoke shows a more disorder horizontal transport under the sole effect of thermal buoyancy than the co-existence of thermal buoyancy and the air inlet.

Research limitations/implications

Because of the chosen research approach, the research results may need to be tested by further experiments.

Practical implications

The paper includes implications for the design of smoke control systems and evacuation in a building fire.

Originality/value

This paper fulfils an identified need to study the behavior of smoke in a fire and optimize the design of smoke control systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 2016

Yanqiu Chen, Xiaodong Zhou, Taolin Zhang, Zhijian Fu, Yuqi Hu and Lizhong Yang

– The purpose of this paper is to study the behavior of smoke flow in building fires and optimize the design of smoke control systems.

Abstract

Purpose

The purpose of this paper is to study the behavior of smoke flow in building fires and optimize the design of smoke control systems.

Design/methodology/approach

A total of 435 3-D fire simulations were conducted through NIST fire dynamics simulator to analyze thermal behavior of combined buoyancy-induced and pressure-driven smoke flow in complex vertical shafts, under consideration of influence of heat release rate (HRR) and locations of heat sources. This influence was evaluated through neutral pressure plane (NPP), which is a critical plane depicting the flow velocity distributions. Hot smoke flows out of shafts beyond the NPP and cold air flows into shafts below the NPP.

Findings

Numerical simulation results show that HRR of heat source has little influence on NPP, while location of heat source can make a significant difference to NPP, particularly in cases of multi-heat source. Identifying the location of NPP helps to develop a more effective way to control the smoke with less energy consumption. Through putting an emphasis on smoke exhausting beyond the NPP and air supplying below the NPP, the smoke control systems can make the best use of energy.

Research limitations/implications

Because of the chosen research approach, the research results may need to be tested by further experiments.

Practical implications

The paper includes implications for the optimization of smoke control systems design in buildings.

Originality/value

This paper fulfills an identified need to research the behavior of hot smoke in building fires and optimize the design of smoke control systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 February 2018

Yu Han, Yanqiu Xia, Xin Chen, Liang Sun, Dongyu Liu and Xiangyu Ge

The purpose of this study is to improve the corrosion resistance of the transmission towers by Zinc-aluminum-magnesium (Zn-Al-Mg) coatings doped with rare earths lanthanum (La…

Abstract

Purpose

The purpose of this study is to improve the corrosion resistance of the transmission towers by Zinc-aluminum-magnesium (Zn-Al-Mg) coatings doped with rare earths lanthanum (La) and cerium (Ce) (denoted as Zn-Al-Mg-Re) in Q345 steel.

Design/methodology/approach

The phase structure of Zn-Al-Mg-Re composite coatings has been determined by X-ray diffraction, whereas their surface morphology and cross-sectional microstructure as well as cross-sectional elemental composition have been analyzed by scanning electron microscopy and energy-dispersive spectrometry. Moreover, the corrosion resistance of Zn-Al-Mg-Re composite coatings has been evaluated by acetic acid accelerated salt spray test of copper strip.

Findings

Experimental results show that doping with La and Ce favors to tune the composition (along with the generation of new phase, such as LaAl3 or Al11Ce3) and refine the microstructure of Zn-Al-Mg galvanizing coatings, thereby significantly improving the corrosion resistance of the coatings. Particularly, Zn-Al-Mg-Re with 0.15% (mass fraction) La exhibits the best corrosion resistance among the tested galvanizing coatings.

Originality/Value

Zinc-aluminum-magnesium (Zn-Al-Mg) coatings doped with rare earths lanthanum (La) and cerium (Ce) (denoted as Zn-Al-Mg-Re) have been prepared on Q345 steel substrate by hot-dip galvanizing so as to improve the corrosion resistance of the transmission towers, and to understand the corrosion inhibition of the Zn-Al-Mg-Re coating.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 27 March 2020

Zhengfeng Cao, Yanqiu Xia, Chuan Chen, Kai Zheng and Yi Zhang

This paper aims to explore polyaniline (PANI) as a lubricant additive to improve the anti-corrosion and tribological properties of ionic liquids (ILs) for actual applications.

Abstract

Purpose

This paper aims to explore polyaniline (PANI) as a lubricant additive to improve the anti-corrosion and tribological properties of ionic liquids (ILs) for actual applications.

Design/methodology/approach

ILs were synthesized by dissolving lithium salts in synthetic oil and were used as a base oil to prepare ILs-based greases. PANI was used as an additive. The tribological properties were investigated in detail and the anti-corrosion ability was also assessed via salt spray test. After friction test, the worn surfaces were characterized by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy to analyze the lubrication mechanisms.

Findings

PANI not only reduces the corrosion but also improves the friction reduction and anti-wear abilities of the ILs-based greases. The analysis indicates that the protective films generated on the worn surfaces were responsible for the preferable anti-corrosion and tribological properties.

Originality/value

This paper provides an effective approach to improve the anti-corrosion and tribological properties of ILs for actual applications.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2019-0469/

Details

Industrial Lubrication and Tribology, vol. 72 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 15 October 2021

Yanqiu Xia, Chuan Chen, Xin Feng and Zhengfeng Cao

The purpose of this paper is to synthesize a kind of core-shell Ag@polyaniline (Ag@PAN) as a lubricant additive to improve the friction reduction and anti-wear abilities of…

161

Abstract

Purpose

The purpose of this paper is to synthesize a kind of core-shell Ag@polyaniline (Ag@PAN) as a lubricant additive to improve the friction reduction and anti-wear abilities of lithium-based complex grease.

Design/methodology/approach

The core-shell Ag@PAN was prepared by a simple method and was introduced into the lithium-based complex grease. The typical properties of Ag@PAN were investigated by scanning electron microscopy (SEM), Fourier transforms infrared spectrometer and thermal gravimetric analyzer. The tribological properties were evaluated under different conditions. After the tribological test, the worn surface was analyzed by SEM and X-ray photoelectron spectroscopy to probe the lubrication mechanisms.

Findings

The prepared Ag@PAN could greatly improve the friction reduction and wear resistance of the friction pair under different conditions. The preferable tribological performances were mainly attributed to the synergism of various lubrication mechanisms including “mending effect,” “rolling effect” and lubricating protective film, and so on.

Originality/value

This study synthesizes a new kind of core-shell Ag@PAN as a lubricant additive, and it possesses preferable friction reduction and anti-wear abilities.

Details

Industrial Lubrication and Tribology, vol. 73 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 February 2022

Yuanwei Liu, Bin Wang, Yan Xie, Yu Chen, Zhongnian Yang, Guojun Han and Yanqiu Dang

The purpose of this paper is to prepare a dual-encapsulated halloysite nano-container to release the capsuled inhibitor as an additive for corrosion protection of epoxy coating.

Abstract

Purpose

The purpose of this paper is to prepare a dual-encapsulated halloysite nano-container to release the capsuled inhibitor as an additive for corrosion protection of epoxy coating.

Design/methodology/approach

Halloysite nano-containers (HNT) were prepared by simultaneously implanting inhibitor benzotriazole (BTA) into the inside and outside of the halloysite using reduced pressure and layer-by-layer (LBL) assembly, respectively. The microstructure and morphology of treated HNT were investigated using Fourier transform infrared spectroscopy and transmission electron microscopy. In addition, the anti-corrosion behaviors of the composite polyepoxy coating with inhibitor-loaded nano-containers BTA@HNT-2 were investigated using the electrochemical impedance spectroscopy and neutral salt spray test.

Findings

Test results showed that the LBL assembly structure of the halloysite nano-container makes the BTA@HNT-2 nano-container be controlled and sustained to release BTA, relying on the pH. Very importantly, the obtained nano-container is also responsive to temperature, owing to the thermosensitivity polyelectrolyte out-shell of the HNT. The result showed Rct of the composite polyepoxy coating can be sufficient to maintain higher than 8.510E+7 Ω·cm2 over 72 h of immersion test. Moreover, the artificial induced defects on the coating surface were sufficiently inhibited in the presence of BTA@HNT-2 nano-container in the polyepoxy coating.

Originality/value

Use of the BTA@HNT-2 as corrosion inhibitor nano-container, with good anti-corrosion property and dual-responsive to pH and temperature, offers a significant rout to prepare smart anti-corrosion coating for protecting metal substrate.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 14 September 2018

Yongqiang Sun, Yan Zhang, Xiao-Liang Shen, Nan Wang, Xi Zhang and Yanqiu Wu

Although the impacts of trust on information disclosure have been well recognized, the trust building mechanisms in social media are still underexplored. To fill this gap, the…

2621

Abstract

Purpose

Although the impacts of trust on information disclosure have been well recognized, the trust building mechanisms in social media are still underexplored. To fill this gap, the purpose of this paper is to explore two trust building mechanisms, namely, institution-based and transference-based trust building and identify how these two mechanisms vary across gender.

Design/methodology/approach

An online survey was conducted to collect data. The partial least squares method was used to examine the relationships among regulatory effectiveness, three trusting perceptions and disclosure intention. A cross-group path coefficient comparison method was used to test gender differences.

Findings

The results suggest that regulatory effectiveness affects competence- and character-based trust and these impacts are stronger for males than for females. Both competence- and character-based trust influence general trust in members while their impacts vary. Competence-based trust is more important for males while character-based trust is more important for females.

Originality/value

This study contributes to social media literature by identifying the two trust building mechanisms with special attention to the role of regulatory effectiveness and trust transfer. Further, this study also sheds light on how these two mechanisms vary across gender.

Details

Aslib Journal of Information Management, vol. 70 no. 5
Type: Research Article
ISSN: 2050-3806

Keywords

1 – 10 of 25