Search results

1 – 10 of 48
Article
Publication date: 2 March 2015

Ahmad Khajouei, Effat Jamalizadeh and Seyed Mohammad Ali Hosseini

The purpose of this paper was to study the corrosion resistance of AA2024 alloy using surfactant-modified halloysite nanocapsules capable of holding benzotriazole (BTA) as the…

Abstract

Purpose

The purpose of this paper was to study the corrosion resistance of AA2024 alloy using surfactant-modified halloysite nanocapsules capable of holding benzotriazole (BTA) as the corrosion inhibitor and discharging it into the solution.

Design/methodology/approach

The effect of surfactant shells was studied by surfactant-modified halloysite nanotubes fabricated through assembly of two types of cationic surfactants. The zeta potential and size distribution measurements were performed using a Zetasizer Nano. The concentration of BTA during release into the solution was detected by using a UV–vis spectrophotometer. The anti-corrosion activity of nanocapsules as free agents with respect to the AA2024 alloy was investigated using the potentiodynamic scan (PDS) method. An epoxy resin doped with nanocapsules was used as an anti-corrosion coating deposited on the AA2024 alloy. The corrosion protection performance of coatings was studied by using the electrochemical impedance spectroscopy (EIS) method.

Findings

The results indicate that the release of the inhibitor from nanocapsules depends on the surfactant shell components. The PDS results confirmed the feasibility of developing “smart” corrosion protection by inhibitor-loaded nanocapsules. The results of EIS measurements showed that the coating with the nanocapsules exhibited enhanced corrosion protection in comparison with the undoped coating.

Originality/value

The findings of this paper indicate that surfactant-modified halloysite nanocapsules can be added to epoxy resin coatings to improve their corrosion protective properties for the AA2024 alloy.

Details

Anti-Corrosion Methods and Materials, vol. 62 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 25 April 2022

Yan Wang, Peng Lv, Yan Liu and Xin Zhou

The purpose of this paper is to provide theoretical guidance and an experimental basis for a smart anti-corrosion coating of halloysite nanocontainers loaded with benzotriazole…

Abstract

Purpose

The purpose of this paper is to provide theoretical guidance and an experimental basis for a smart anti-corrosion coating of halloysite nanocontainers loaded with benzotriazole (BTA) inhibitors on copper in a marine corrosion environment.

Design/methodology/approach

In the present study, the smart anti-corrosion coatings of halloysite nanocontainers loaded inhibitors on copper were synthesized by adding BTA inside the halloysite nanocontainers. Then, the halloysite carrier’s surface topography and composition in the halloysite were observed using scanning electron microscopy. After the successful synthesis of the coating, the inhibitor’s physical and chemical properties, as well as the mass change in halloysite, were evaluated in terms of temperature fluctuation and time using thermal gravity analysis (TGA). Finally, electrochemical impedance spectroscopy was used to check the pH selectivity for the self-releasing of BTA out of the nanocontainers.

Findings

The results indicate that the efficiency of the nanotubes was enhanced by calcination at high temperatures. The thermal gravity analysis by TGA shows that halloysite nanoparticles store inhibitors BTA and there are approximately 37.39 Wt.% BTA loaded in each nanocontainer. The release of the preloaded BTA from the halloysite nanocontainers is pH 7 in a 3.5% NaCl solution.

Originality/value

The development of a new environmentally safe coating for corrosion protection of metallic surfaces has attracted great interest in material science over the past few years. At present, halloysite nanotubes (HNTs) have become a research hotspot internationally and are widely used in nanocomposites, catalysis, nanofiltration, drug sustained-release and other fields. However, the application of HNT is limited by its modification methods. As the carrier of metal nanocorrosion inhibitor in the Marine corrosive environment, the modification research of HNT still needs to be further studied and improved so as to expand the practical application of HNT in the Marine corrosive environment. In this paper, the modification of HNTs was investigated and observed. Four different modification schemes were used to observe and compare the structural properties of the nanotubes under different conditions so as to provide a theoretical basis for the further loading of HNTs as corrosion inhibitors.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 16 February 2022

Yuanwei Liu, Bin Wang, Yan Xie, Yu Chen, Zhongnian Yang, Guojun Han and Yanqiu Dang

The purpose of this paper is to prepare a dual-encapsulated halloysite nano-container to release the capsuled inhibitor as an additive for corrosion protection of epoxy coating.

Abstract

Purpose

The purpose of this paper is to prepare a dual-encapsulated halloysite nano-container to release the capsuled inhibitor as an additive for corrosion protection of epoxy coating.

Design/methodology/approach

Halloysite nano-containers (HNT) were prepared by simultaneously implanting inhibitor benzotriazole (BTA) into the inside and outside of the halloysite using reduced pressure and layer-by-layer (LBL) assembly, respectively. The microstructure and morphology of treated HNT were investigated using Fourier transform infrared spectroscopy and transmission electron microscopy. In addition, the anti-corrosion behaviors of the composite polyepoxy coating with inhibitor-loaded nano-containers BTA@HNT-2 were investigated using the electrochemical impedance spectroscopy and neutral salt spray test.

Findings

Test results showed that the LBL assembly structure of the halloysite nano-container makes the BTA@HNT-2 nano-container be controlled and sustained to release BTA, relying on the pH. Very importantly, the obtained nano-container is also responsive to temperature, owing to the thermosensitivity polyelectrolyte out-shell of the HNT. The result showed Rct of the composite polyepoxy coating can be sufficient to maintain higher than 8.510E+7 Ω·cm2 over 72 h of immersion test. Moreover, the artificial induced defects on the coating surface were sufficiently inhibited in the presence of BTA@HNT-2 nano-container in the polyepoxy coating.

Originality/value

Use of the BTA@HNT-2 as corrosion inhibitor nano-container, with good anti-corrosion property and dual-responsive to pH and temperature, offers a significant rout to prepare smart anti-corrosion coating for protecting metal substrate.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 28 July 2021

Gongwen Tang, Tingting Ren, Yi Wang, Zhishan Yan, Linrong Ma, Xiangyu Hou and Xin Huang

The purpose of this paper is to study the effect of the nano tube fillers on the corrosion protection properties of the self-curing epoxy (SEP) coatings.

110

Abstract

Purpose

The purpose of this paper is to study the effect of the nano tube fillers on the corrosion protection properties of the self-curing epoxy (SEP) coatings.

Design/methodology/approach

The self-curing epoxy (SEP) resin was synthesized via a reaction between diisopropoxy-bis ethylacetoacetato titanate and the epoxy resin. Halloysite nanotubes (HNTs) was surface modified by grafting (3-glycidoxypropyl) trimethoxysilane to obtain modified HNTs (mHNTs). The HNTs and mHNTs are used as nano tube fillers for the SEP coating. The thermal stability of the coatings was assessed via thermo-gravimetric analysis. The field-emission scanning electron microscopy (SEM) was conducted to analyze the surfaces and cross sections of the coatings. The anticorrosive efficiencies of the coatings were investigated by electrochemical measurements and a neutral salt spray test.

Findings

The results demonstrated that the additions of HNTs and mHNTs have little effect on the thermal degradation temperature of the SEP coating. However, the addition of the nanotubes reduced the corrosion resistance of the SEP coating.

Originality/value

The SEP coating itself showed excellent corrosion resistance without any reinforcement particles and is hence promising for application in the heavy-duty anticorrosion field of heat exchangers.

Details

Pigment & Resin Technology, vol. 51 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 31 May 2019

Christian Mauricio Cobos, Luis Garzón, Juan López Martinez, Octavio Fenollar and Santiago Ferrandiz

This paper aims to propose using polylactic acid (PLA) as an alternative to nanocomposites in additive manufacturing processes in fusion deposition modelling (FDM) systems and…

Abstract

Purpose

This paper aims to propose using polylactic acid (PLA) as an alternative to nanocomposites in additive manufacturing processes in fusion deposition modelling (FDM) systems and describe its thermal and rheological conditions with multi-wall carbon nanotube (PLA/MWCNT) and halloysite nanotube (PLA/HNT) composites for possible applications in additive manufacturing processes.

Design/methodology/approach

PLA/MWCNTs and PLA/HNTs were obtained through fusion in a co-rotating twin-screw extruder. PLA was mixed with different percentages of MWCNTs and HNTs at concentrations of 0.5 Wt.%, 0.75 Wt.% and 1 Wt.%. Differential scanning calorimetry (DSC) and capillary rheometry were used to characterise these products, together with an analysis of the melt flow index (MFI).

Findings

The DSC data revealed that the nanocomposites had a glass transition temperature Tg = 65 ± 2°C and a melting temperature Tm = 169 ± 1°C. The crystallisation temperature of PLA/MWCNTs and PLA/HNTs was between 107 ± 2°C and 129°C, respectively. The viscosity data of PLA/MWCNTs and PLA/HNTs obtained by capillary rheometry indicated that the viscosity of the materials is the same as that of neat PLA. These results were confirmed by the higher fluidity index in the MFI analysis.

Originality/value

This paper presents an alternative for the applications of nanocomposites in additive manufacturing processes in FDM systems.

Details

Rapid Prototyping Journal, vol. 25 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 27 April 2020

Christian Mauricio Cobos, Octavio Fenollar, Juan López Martinez, Santiago Ferrandiz and Luis Garzón

This paper aims to describe the influence of maleinized linseed oil (MLO), when used as a lubricant, on the thermal and rheological properties of PLA/MWCNTs (polylactic…

1267

Abstract

Purpose

This paper aims to describe the influence of maleinized linseed oil (MLO), when used as a lubricant, on the thermal and rheological properties of PLA/MWCNTs (polylactic acid/multi-walled carbon nanotubes) and PLA/HNT (halloysite nanotubes) nanocomposites, as a reference for application in 3D printing processes.

Design/methodology/approach

Nanocomposites were obtained by melting in a twin-screw extruder, mixing PLA with MWCNTs and HNTs in different percentages of 0.5, 0.75 and 1 Wt.% for subsequent mixing by the same process with 5 phr MLO, for application in additive manufacturing, as analyzed by means of differential scanning calorimetry (DSC), capillary rheometry, melt flow rate (MFL) and field emission scanning electron microscopy (FESEM).

Findings

The results obtained for thermal characterization by using DSC indicate the non-variation of glass transition temperature Tg = 62 ± 2°C and a melting temperature (Tm) around 170°C. Crystallization temperature dropped by approximately 12°C, which should be kept in mind during the transformation processes. The values obtained by capillary rheometry indicate that the material’s viscosity is reduced by the influence of the MLO plasticizer’s lubricant effect on the PLA’s molecular structure. The melt flow index values confirm a rise of approximately 46% in the flow index and back up the capillary rheometry results. The values obtained were as follows: PLA/0.5 Wt.% MWCNT/MLO 5 phr 54.07, PLA/0.75 Wt.% MWCNT/MLO 5 phr 53.46, PLA/1 Wt.% MWCNT/MLO 5 phr 51.84y PLA/0.5 Wt.% HNT/MLO 5 phr 61.8, PLA/0.75 Wt.% HNT/MLO 5 phr 68.3 and PLA/1 Wt.% HNT/MLO 5 phr 71.2 g/10 min. Apart from the nanocharge distribution, the information obtained from the FESEM shows the existence of a cluster, which could have been avoided by more energetic stirring during the nanocompound manufacturing process.

Social implications

This paper presents an analysis of the insertion of plasticizer in nanocomposites for the application in additive manufacturing processes in fusion deposition modelling (FDM) system.

Originality/value

This is a novel original research work.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 3 January 2022

Valéry Tusambila Wadi, Özkan Özmen, Abdullah Caliskan and Mehmet Baki Karamış

This paper aims to evaluate the dynamic viscosity and thermal conductivity of halloysite nanotubes (HNTs) suspended in SAE 5W40 using machine learning methods (MLMs).

Abstract

Purpose

This paper aims to evaluate the dynamic viscosity and thermal conductivity of halloysite nanotubes (HNTs) suspended in SAE 5W40 using machine learning methods (MLMs).

Design/methodology/approach

A two-step method with surfactant was selected to prepare nanolubricants in concentrations of 0.025, 0.05, 0.1 and 0.5 wt%. Thermal conductivity and dynamic viscosity of nanofluids were ascertained over the temperature range of 25–70 °C, with an increment step of 5 °C, using a KD2-Pro analyser device and a digital viscometer MRC VIS-8. Additionally, four different MLMs, including Gaussian process regression (GPR), artificial neural network (ANN), support vector machine (SVM) and decision tree (DT), were used for predicting dynamic viscosity and thermal conductivity by using nanoparticle concentration and temperature as input parameters.

Findings

According to the achieved results, the dynamic viscosity and thermal conductivity of nanolubricants mostly increased with the rise of nanoparticle concentration in the base oil. All the proposed models, especially GPR with root mean square error mean values of 0.0047 for dynamic viscosity and 0.0016 for thermal conductivity, basically showed superior ability and stability to estimate the viscosity and thermal conductivity of nanolubricants.

Practical implications

The results of this paper could contribute to optimising the cost and time required for modelling the thermophysical properties of lubricants.

Originality/value

To the best of the author’s knowledge, in this available literature, there is no paper dealing with experimental study and prediction of dynamic viscosity and thermal conductivity of HNTs-based nanolubricant using GPR, ANN, SVM and DT.

Details

Industrial Lubrication and Tribology, vol. 74 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 31 October 2018

Natalia Ewa Zalewska, Maja Mroczkowska-Szerszeń, Joerg Fritz and Maria Błęcka

This paper aims to characterize the mineral composition of Martian surfaces based on Thermal Emission Spectrometer (TES; Mars Global Surveyor) as measured in the infrared thermal…

Abstract

Purpose

This paper aims to characterize the mineral composition of Martian surfaces based on Thermal Emission Spectrometer (TES; Mars Global Surveyor) as measured in the infrared thermal range. It presents modeling and interpreting of TES spectral data from selected Martian regions from which the atmospheric influences had been removed using radiative transfer algorithm and deconvolution algorithm. The spectra from the dark area of Cimmeria Terra and the bright Isidis Planitia were developed in Philip Christensen’s and Joshua Bandfield’s publications, where these spectra were subjected to spectral deconvolution to estimate the mineral composition of the Martian surface. The results of the analyses of these spectra were used for the modeling of dusty and non-dusty surface of Mars. As an additional source, the mineral compositions of Polish basalts and mafic rocks were used for these surfaces as well as for modeling Martian meteorites Shergottites, Nakhlites and Chassignites. Finally, the spectra for the modeling of the Hellas region were obtained from the Planetary Fourier Spectrometer (PFS) – (Mars Express) and the mineralogical compositions of basalts from the southern part of Poland were used for this purpose. The Hellas region was modeled also using simulated Martian soil samples Phyllosilicatic Mars Regolith Simulant and Sulfatic Mars Regolith Simulant, showing as a result that the composition of this selected area has a high content of sulfates. Linear spectral combination was chosen as the best modeling method. The modeling was performed using PFSLook software written in the Space Research Centre of the Polish Academy of Sciences. Additional measurements were made with an infrared spectrometer in thermal infrared spectroscopy, for comparison with the measurements of PFS and TES. The research uses a kind of modeling that successfully matches mineralogical composition to the measured spectrum from the surface of Mars, which is the main goal of the publication. This method is used for areas where sample collection is not yet possible. The areas have been chosen based on public availability of the data.

Design/methodology/approach

The infrared spectra of the Martian surface were modeled by applying the linear combination of the spectra of selected minerals, which then are normalized against the measured surface area with previously separated atmosphere. The minerals for modeling are selected based on the expected composition of the Martian rocks, such as basalt. The software used for this purpose was PFSLook, a program written in C++ at the Space Research Centre of the Polish Academy of Sciences, which is based on adding the spectra of minerals in the relevant percentage, resulting in a final spectrum containing 100 per cent of the minerals.

Findings

The results of this work confirmed that there is a relationship between the modeled, altered and unaltered, basaltic surface and the measured spectrum from Martian instruments. Spectral deconvolution makes it possible to interpret the measured spectra from areas that are potentially difficult to explore or to choose interesting areas to explore on site. The method is described for mid-infrared because of software availability, but it can be successfully applied to shortwave spectra in near-infrared (NIR) band for data from the currently functioning Martian spectroscopes.

Originality/value

This work is the only one attempting modeling the spectra of the surface of Mars with a separated atmosphere and to determine the mineralogical composition.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 28 July 2023

Anagi Balachandra, Roz-Ud-Din Nassar and Parviz Soroushian

This study aims to report the development and experimental evaluation of three innovative corrosion-resistant modified epoxy coatings, namely, nanocomposite/toughened…

Abstract

Purpose

This study aims to report the development and experimental evaluation of three innovative corrosion-resistant modified epoxy coatings, namely, nanocomposite/toughened, self-healing and hybrid epoxy coatings, for application on steel substrates.

Design/methodology/approach

The corrosion resistance of these coatings was evaluated in a highly corrosive environment of salt fog spray for 2,500 h of exposure. Electrochemical impedance spectroscopy (EIS) measurements in sustained exposure to NaCl in a saturated Ca(OH)2 solution, rust creepage measurements at the location of scribe formed in the coatings and adhesion strength test were used to assess the performance of the innovative coatings. Commercially available marine-grade protective epoxy coatings were used as the reference coatings.

Findings

The test results showed that the modified epoxy coatings exhibited excellent corrosion resistance when exposed to an aggressive environment for extended periods. The EIS measurements, rust creepage measurements, pull-off strength and visual appearance of the aged modified–epoxy–coated specimens confirmed the enhanced corrosion resistance of the modified epoxy coatings.

Originality/value

Among the three types of modified coatings, the hybrid epoxy coating stands out to be the best performer.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 April 2020

Yuhua Dong, Chundong Geng, Xiang Wang and Qiong Zhou

This paper aims to investigate effect of porous polystyrene microspheres encapsulated inhibitor on the protection performance of epoxy resin coating.

Abstract

Purpose

This paper aims to investigate effect of porous polystyrene microspheres encapsulated inhibitor on the protection performance of epoxy resin coating.

Design/methodology/approach

Porous polystyrene (PS) microspheres were synthesized by soap-free emulsion polymerization. The morphology of microspheres was observed by scanning electron microscopy and transmission electron microscopy. Corrosion inhibitor benzotriazole was encapsulated into porous PS microspheres. The protection performance of epoxy resin coating with different contents of PS microspheres was tested by polarization curve.

Findings

The findings of electrochemical impedance spectroscopy and scanning vibrating electrode technique showed that addition of corrosion inhibitor to porous PS microspheres further improved the protection performance of the coatings.

Practical implications

Porous PS microspheres could be used as nanocontainer to encapsulate corrosion inhibitor.

Originality/value

Addition of porous PS microspheres with corrosion inhibitor improved the protection performance of the coatings.

Details

Pigment & Resin Technology, vol. 49 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 48