Search results

1 – 10 of 11
Article
Publication date: 8 February 2018

Yu Han, Yanqiu Xia, Xin Chen, Liang Sun, Dongyu Liu and Xiangyu Ge

The purpose of this study is to improve the corrosion resistance of the transmission towers by Zinc-aluminum-magnesium (Zn-Al-Mg) coatings doped with rare earths lanthanum (La…

Abstract

Purpose

The purpose of this study is to improve the corrosion resistance of the transmission towers by Zinc-aluminum-magnesium (Zn-Al-Mg) coatings doped with rare earths lanthanum (La) and cerium (Ce) (denoted as Zn-Al-Mg-Re) in Q345 steel.

Design/methodology/approach

The phase structure of Zn-Al-Mg-Re composite coatings has been determined by X-ray diffraction, whereas their surface morphology and cross-sectional microstructure as well as cross-sectional elemental composition have been analyzed by scanning electron microscopy and energy-dispersive spectrometry. Moreover, the corrosion resistance of Zn-Al-Mg-Re composite coatings has been evaluated by acetic acid accelerated salt spray test of copper strip.

Findings

Experimental results show that doping with La and Ce favors to tune the composition (along with the generation of new phase, such as LaAl3 or Al11Ce3) and refine the microstructure of Zn-Al-Mg galvanizing coatings, thereby significantly improving the corrosion resistance of the coatings. Particularly, Zn-Al-Mg-Re with 0.15% (mass fraction) La exhibits the best corrosion resistance among the tested galvanizing coatings.

Originality/Value

Zinc-aluminum-magnesium (Zn-Al-Mg) coatings doped with rare earths lanthanum (La) and cerium (Ce) (denoted as Zn-Al-Mg-Re) have been prepared on Q345 steel substrate by hot-dip galvanizing so as to improve the corrosion resistance of the transmission towers, and to understand the corrosion inhibition of the Zn-Al-Mg-Re coating.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 September 2023

Donghui Hu, Shenyou Song, Zongxing Zhang and Linfeng Wang

This paper aims to figure out the conundrum that the corrosion resistance longevity of steel wires for bridge cables was arduous to meet the requirements.

Abstract

Purpose

This paper aims to figure out the conundrum that the corrosion resistance longevity of steel wires for bridge cables was arduous to meet the requirements.

Design/methodology/approach

The “two-step” hot-dip coating process for cable steel wires was developed, which involved first hot-dip galvanizing and then hot-dip galvanizing of aluminum magnesium alloy. The corrosion rate, polarization curve and impedance of Zn–6Al–1Mg and Zn–10Al–3Mg alloy-coated steel wires were compared through acetate spray test and electrochemical test, and the corrosion mechanism of Zn–Al–Mg alloy-coated steel wires was revealed.

Findings

The corrosion resistance of Zn–10Al–3Mg alloy-coated steel wires had the best corrosion resistance, which was more than seven times that of pure zinc-coated steel wires. The corrosion current of Zn–10Al–3Mg alloy-coated steel wires was lower than that of Zn–6Al–1Mg alloy-coated steel wires, whereas the capacitive arc and impedance value of the former were higher than that of the latter, making it clear that the corrosion resistance of Zn–10Al–3Mg was better than that of Zn–6Al–1Mg alloy coating. Moreover, the Zn–Al–Mg alloy-coated steel wires for bridge cables had the function of coating “self-repairing.”

Originality/value

Controlling the temperature and time of the hot dip galvanizing stage can reduce the thickness of transition layer and solve the problem of easy cracking of the transition layer in the Zn–Al–Mg alloy coating due to the Sandelin effect.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 21 February 2024

Shuliu Wang, Qianqian Liu, Jin Wang, Nana Chen, JunHang Chen, Jialiang Song, Xin Zhang and Kui Xiao

This study aims to investigate the role of aluminium (Al) in marine environment and the corrosion mechanism of galvalume coatings by conducting accelerated experiments and data…

Abstract

Purpose

This study aims to investigate the role of aluminium (Al) in marine environment and the corrosion mechanism of galvalume coatings by conducting accelerated experiments and data analysis.

Design/methodology/approach

Samples were subjected to accelerated corrosion for 136 days via salt spray tests to simulate the natural conditions of marine environment and consequently accelerate the experiments. Subsequently, the samples were examined using various test methods, such as EDS, scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS), and the obtained data were analysed.

Findings

Galvalume coatings comprised interdigitated zinc (Zn)-rich and dendritic Al-rich phases. Corrosion was observed to begin with a Zn-rich phase. The primary components of the corrosion product film were Al2O3 and Zn5(OH)8Cl2·H2O. It was confirmed that the role of Al was to form a dense protective film, thereby successfully blocking the entry of corrosive media and protecting the iron substrate.

Originality/value

This study provides a clearer understanding of the corrosion mechanism and kinetics of galvalume coatings in a simulated marine environment. In addition, the role of Al, which is rarely mentioned in the literature, was investigated.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 25 October 2021

Prabhat Kumar Rai, Dinesh Rout, D. Satish Kumar, Sanjay Sharma and G. Balachandran

The purpose of the present study is to simulate the industrial hot-dip process of Zn-2.5Wt.%Mg-3 Wt.%Al and Zn-2.5 Wt.%Mg-9 Wt.%Al-0.15 Wt.%Si coatings and to study the effect of…

Abstract

Purpose

The purpose of the present study is to simulate the industrial hot-dip process of Zn-2.5Wt.%Mg-3 Wt.%Al and Zn-2.5 Wt.%Mg-9 Wt.%Al-0.15 Wt.%Si coatings and to study the effect of low and high Al variation on their microstructure, microhardness, adhesion and corrosion behaviour.

Design/methodology/approach

The hot-dip Zn-2.5 Mg-xAl coating simulation on steel substrate was carried out using a hot-dip process simulator. The microstructure of the coatings was characterized using a scanning electron microscope, energy dispersive spectroscopy and X-ray diffraction. The corrosion behaviour of the coatings was studied using a salt spray test in 5% NaCl solution as well as dynamic polarization in 3.5% NaCl solution.

Findings

Microhardness of the developed Zn-2.5 Mg-xAl coatings has been found to be approximately two times higher than that of the conventional galvanized coating. Zn-2.5 Mg-3Al coating has exhibited two times higher corrosion resistance as compared to that of Zn-2.5 Mg-9Al-0.15Si coating because of formation of more homogeneous and defect-free microstructure of the former. The MgZn2 phase has undergone preferential dissolution and provided Mg2+ ions to form a protective film.

Originality/value

The relative corrosion resistance of the two Zn–Al–Mg coatings with different Al content has been studied. The defect formed because of higher Al addition in the coating has been detected, and its effect on corrosion behaviour has been analysed.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 4 September 2017

Zeinab Abdel Hamid, Sayed Abd El Rehim and Moustafa Ibrahim

The purpose of this work was to investigate the effect of Si content of steel substrate on the performance of the hot-dip galvanized layer. Moreover, the structure of the…

Abstract

Purpose

The purpose of this work was to investigate the effect of Si content of steel substrate on the performance of the hot-dip galvanized layer. Moreover, the structure of the galvanized layers and the corrosion performance of the galvanized steel in 3.5 per cent NaCl solution have been studied.

Design/methodology/approach

The galvanized layer has been formed by the hot-dip technique, and the influence of silicon content in the steel composition on the corrosion performance of the galvanized steel was estimated. The surface morphologies and chemical compositions of the coated layers were assessed using scanning electron microscopy and energy-dispersive X-ray analysis, respectively. Potentiodynamic polarization Tafel lines and electrochemical impedance spectroscopy (EIS) tests were used to evaluate the corrosion resistance of the galvanized steel in 3.5 per cent NaCl solution.

Findings

The results proved that adhere, compact and continuous coatings were formed with steel containing 0.56 Wt.% Si, while cracks and overly thick coatings were obtained with steel containing 1.46 Wt.% Si. Tafel plots illustrated that the corrosion rate of galvanized steel containing 0.08 and 0.56 Wt.% Si was lower than that of the galvanized steel containing 1.46 Wt.% Si. Also, the results of the EIS reveal that the impedance of the galvanized steel containing 0.08 and 0.56 Wt.% Si was the highest and the lowest, respectively, with the steel containing 1.46 Wt.% Si.

Social implications

Generally, in industry steels containing high amounts of silicon (0.15-0.25 Wt.%) can be galvanized satisfactory either by controlling the temperature (440°C) or adding Ni to the galvanized bath. The low temperature reduces the coating thickness; nickel amount must be controlled to prevent the formation of higher amounts of dross. This study proved that high Si steel of up to 0.56 Wt.% can be galvanized at 460°C without adding Ni to the galvanized bath and form adhere, compact, free cracks and have good corrosion resistance. Consequently, a social benefit can be associated with galvanizing high Si steel, leading to an increase in the cost of the process.

Originality/value

The results presented in this work are an insight into understanding the hot-dip galvanizing of high Si steel. The corrosion resistance of galvanized steel containing 0.56 Wt.% Si alloys has been considered as a promising behavior. In this work, a consistent assessment of the results was achieved on the laboratory scale.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 14 August 2018

Chunhui Kang, Decheng Kong, JiZheng Yao, Chunyun Guo, Li Wang, K. Xiao and C.F. Dong

This paper aims to investigate the corrosion behavior of zinc in a typical hot and dry atmosphere. It proposes the dynamic corrosion for different exposure periods. Results can…

135

Abstract

Purpose

This paper aims to investigate the corrosion behavior of zinc in a typical hot and dry atmosphere. It proposes the dynamic corrosion for different exposure periods. Results can provide the basic data and corrosion mechanism of zinc in such environment.

Design/methodology/approach

In this paper, the authors investigated the corrosion behavior of pure zinc exposed in the typical hot and dry environment in Turpan for one-four years, which has never been studied. Scanning electron microscopy, laser scanning confocal microscopy, electron probe micro-analyzer (EPMA), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were conducted to measure the corrosion morphology and products of zinc. Finally, combining electrochemical impedance spectroscopy and scanning Kelvin probe techniques, the corrosion mechanism of zinc in Turpan was examined.

Findings

The thickness loss of the zinc followed an exponential law with respect to exposure time: D = 3.17 t0.61, and both of the rust layer resistance and the charge transfer resistance increased with exposure time. The corrosion products mainly comprised ZnO, Zn(OH)2, Zn5(CO3)2(OH)6, Zn4SO4(OH)6·5H2O and Zn12(SO4)3Cl3(OH)15·5H2O. The Kelvin potentials shifted toward the positive direction from −0.380 to −0.262 V (vs saturated calomel electrode [SCE]) when the exposure time extended from one to four years and the distribution of the corrosion products became more and more uniform.

Originality/value

The corrosion behavior of pure zinc in the typical hot and dry environment in Turpan has not been studied. The dynamic corrosion for different exposure periods was obtained. The corrosion products were systemically investigated via energy-dispersive X-ray spectroscopy, EPMA, XPS and XRD.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 January 1957

The first European Corrosion Congress took place in Paris during the week beginning November 18. It was organised by the Société de Chimie Industrielle, in conjunction with the…

Abstract

The first European Corrosion Congress took place in Paris during the week beginning November 18. It was organised by the Société de Chimie Industrielle, in conjunction with the Federation Européen de Corrosion, contemporary with the XXIX Congrès International de Chimie Industrielle. Professor A. Portevin was President of the Congress and the technical meetings were organised by a committee under the presidency of Monsieur G. Chaudron, Director of the Centre National de la Recherche Scientifique.

Details

Anti-Corrosion Methods and Materials, vol. 4 no. 1
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 6 June 2016

Roman Kolenak, Igor Kostolný and Martin Sahul

The work aims to study the direct bonding of silicon substrate with solders type Sn-Ag-Ti.

Abstract

Purpose

The work aims to study the direct bonding of silicon substrate with solders type Sn-Ag-Ti.

Design/methodology/approach

During the bonding process with ultrasound assistance, the active element (Ti,Ce,Mg) is distributed from the solder to interface with a silicon substrate, where it supports the bond formation.

Findings

Formation of a reaction layer, 1-2 μm in thickness, was observed. The new Si2Ti phases and Mg2Si phase were identified in the reaction layer.

Originality/value

The results of analysis suggest that the Si/Sn-Ag-Ti joint is of diffusion character. The highest average strength on silicon substrate (39 MPa) was achieved with Sn-Ag-Ti(Mg) solder.

Details

Soldering & Surface Mount Technology, vol. 28 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 28 April 2020

Mohd Najib Ali Mokhtar, M.Z. Abdullah, Abdullah Aziz Saad and Fakhrozi Cheani

This paper focuses on the reliability of the solder joint after the self-alignment phenomenon during reflow soldering. The aim of this study is to analyse the joint quality of the…

124

Abstract

Purpose

This paper focuses on the reliability of the solder joint after the self-alignment phenomenon during reflow soldering. The aim of this study is to analyse the joint quality of the self-alignment assemblies of SnAg alloy solder joints with varying silver content.

Design/methodology/approach

The shear strength assessment was conducted in accordance with the JIS Z3 198-7 standard. The standard visual inspection of IPC-A-610G was also performed to inspect the self-alignment features of the solder joint samples. Statistical analysis was conducted to determine the probabilistic relationship of shear strength of the misalignment components.

Findings

The results from the mechanical reliability study indicate that there were decreasing trends in the shear strength value as misalignment offset increased. For shift mode configuration in the range of 0-300 µm, the resulting chip assembly inspection after the reflow process was in line with the IPC-A-610G standard. The statistical analysis shows that the solder type variation was insignificant to the shear strength of the chip resistor. The study concluded that the fracture occurred partially in the termination metallization at the lower part of the chip resistor. The copper content of the joint on that area shows that the crack occurred in the solder joint, and high silver content on the selected zone indicated that the fracture happened partially in the termination structure, as the termination structure of the lead-free chip resistor consists of an inner layer of silver and an outer layer of tin.

Practical implications

This study’s findings provide valuable guidelines and references to engineers and integrated circuit designers during the reflow soldering process in the microelectronics industry.

Originality/value

Studies on the effect of component misalignment on joint mechanical reliability are still limited, and studies on solder joint reliability involving the effect of differing contents of silver on varying chip component offset are rarely reported. Thus, this study is important to effectively bridge the research gap and yield appropriate guidelines in the potential industry.

Details

Soldering & Surface Mount Technology, vol. 33 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 24 March 2022

Asli Günay Bulutsuz

Zn has been attracting increasing attention with its biological compatibility property as a degradable implant material. Besides mechanical properties, especially for bone implant…

Abstract

Purpose

Zn has been attracting increasing attention with its biological compatibility property as a degradable implant material. Besides mechanical properties, especially for bone implant applications, wear resistance is a crucial mechanical property. The purpose of this study is to investigate HPTed Zn samples’ tribological behavior under dry and simulated body fluid (SBF) lubrication conditions.

Design/methodology/approach

Pure Zn powders were consolidated via the high-pressure torsion (HPT) method with 1, 5 and 10 rotations. Cast pure Zn samples were used as the control group. The wear behavior of pure Zn samples was investigated under dry and SBF lubrication conditions with a ball-on testing method. The wear tracks were observed with a mechanical profilometer and scanning electron microscope (SEM).

Findings

The application of HPT not only improved the mechanical strength and degradation performance but also improved wear resistance. However, tests with SBF resulted in higher wear rates. Besides, SBF significantly masked the positive effect of HPT on the coefficient of friction (COF). Although with SBF tests, 10 HPT rotation samples resulted in the lowest wear width and volume.

Originality/value

The main originality of this study is to reveal the HPT process and SBF effects on the tribological behavior of pure Zn to observe their potential usage for bone implant applications.

Details

Industrial Lubrication and Tribology, vol. 74 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 11