Search results

1 – 10 of over 40000
Article
Publication date: 25 October 2021

Liu-Qing Li, Yi-Tian Gao, Xin Yu, Gao-Fu Deng and Cui-Cui Ding

This paper aims to study the Gramian solutions and solitonic interactions of a (2 + 1)-dimensional Broer–Kaup–Kupershmidt (BKK) system, which models the nonlinear and dispersive…

Abstract

Purpose

This paper aims to study the Gramian solutions and solitonic interactions of a (2 + 1)-dimensional Broer–Kaup–Kupershmidt (BKK) system, which models the nonlinear and dispersive long gravity waves traveling along two horizontal directions in the shallow water of uniform depth.

Design/methodology/approach

Pfaffian technique is used to construct the Gramian solutions of the (2 + 1)-dimensional BKK system. Asymptotic analysis is applied on the two-soliton solutions to study the interaction properties.

Findings

N-soliton solutions in the Gramian with a real function ζ(y) of the (2 + 1)-dimensional BKK system are constructed and proved, where N is a positive integer and y is the scaled space variable. Conditions of elastic and inelastic interactions between the two solitons are revealed asymptotically. For the three and four solitons, elastic, inelastic interactions and soliton resonances are discussed graphically. Effect of the wave numbers, initial phases and ζ(y) on the solitonic interactions is also studied.

Originality/value

Shallow water waves are studied for the applications in environmental engineering and hydraulic engineering. This paper studies the shallow water waves through the Gramian solutions of a (2 + 1)-dimensional BKK system and provides some phenomena that have not been studied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 October 2017

Zimeng Wang, Fabrice Colin, Guigao Le and Junfeng Zhang

The purpose of this paper is to develop a counter-extrapolation approach for computational heat and mass transfer with the interfacial discontinuity considered at conjugate…

125

Abstract

Purpose

The purpose of this paper is to develop a counter-extrapolation approach for computational heat and mass transfer with the interfacial discontinuity considered at conjugate interfaces.

Design/methodology/approach

By applying finite-difference approximations for the interfacial gradients along the local normal direction, the conjugate system can be simplified to the Dirichlet boundary problems for individual domains. A suitable method for the Dirichlet boundary value condition can then be used. The lattice Boltzmann method has been used to demonstrate the method. The model has been carefully validated by comparing the simulation results and theoretical solutions for steady and unsteady systems with flat or circular interfaces. Furthermore, the cooling process of a hot cylinder in a cold flow, which involves unsteady flow and heat transfer across a curved interface, has been simulated as an example to illustrate the practical usefulness of this model.

Findings

Good agreement has been observed in comparisons of simulations and theoretical solutions. The convergence and stability of the method have also been examined and satisfactory results have been obtained. Results of the cylinder cooling process show that a surface insulation layer can effectively reduce the heat transfer process and slow down the cooling process.

Originality/value

This method possesses several technical advantages, including the simple and straightforward algorithm, and accurate representation of the interface geometry. The basic idea and algorithm of the counter-extrapolation procedure presented here can be readily extended to other lattice Boltzmann models and even other computational technologies for heat and mass transfer systems with interface discontinuity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 15 December 2020

Qiming Chen, Xinyi Fei, Lie Xie, Dongliu Li and Qibing Wang

1. To improve the causality analysis performance, a novel causality detector based on time-delayed convergent cross mapping (TD-CCM) is proposed in this work. 2. Identify the root…

Abstract

Purpose

1. To improve the causality analysis performance, a novel causality detector based on time-delayed convergent cross mapping (TD-CCM) is proposed in this work. 2. Identify the root cause of plant-wide oscillations in process control system.

Design/methodology/approach

A novel causality analysis framework is proposed based on denoising and periodicity-removing TD-CCM (time-delayed convergent cross mapping). We first point out that noise and periodicity have adverse effects on causality detection. Then, the empirical mode decomposition (EMD) and detrended fluctuation analysis (FDA) are combined to achieve denoising. The periodicities are effectively removed through singular spectrum analysis (SSA). Following, the TD-CCM can accurately capture the causalities and locate the root cause by analyzing the filtered signals.

Findings

1. A novel causality detector based on denoising and periodicity-removing time-delayed convergent cross mapping (TD-CCM) is proposed. 2. Simulation studies show that the proposed method is able to improve the causality analysis performance. 3. Industrial case study shows the proposed method can be used to analyze the root cause of plant-wide oscillations in process control system.

Originality/value

1. A novel causality detector based on denoising and periodicity-removing time-delayed convergent cross mapping (TD-CCM) is proposed. 2. The influences of noise and periodicity on causality analysis are investigated. 3. Simulations and industrial case shows that the proposed method can improve the causality analysis performance and can be used to identify the root cause of plant-wide oscillations in process control system.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 1 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 6 June 2024

Mingze Jiang, Minghui Jiang, Jiaxin Xue, Wentao Zhan and Yuntao Liu

In the construction of charging piles, traditional gas stations possess significant advantages in terms of regional and financial resources. The transformation of gas stations…

Abstract

Purpose

In the construction of charging piles, traditional gas stations possess significant advantages in terms of regional and financial resources. The transformation of gas stations into “refueling+charging” integrated gas stations relies on charging pile manufacturers and government, involving coordination issues with them. This paper aims to propose a joint coordination contract based on the principles of cost-sharing and revenue-sharing. The objective is to achieve systemic coordination among integrated gas stations, charging pile manufacturers, and the government, optimizing the planning of the quantity of charging piles and charging prices.

Design/methodology/approach

We have constructed an operational system model based on the Stackelberg game between charging pile manufacturers, integrated gas stations, and government. We have analyzed the optimal quantity of charging piles and charging prices under the impact of government subsidy policies in both decentralized and centralized operation scenarios. Additionally, we have proposed a joint coordination contract based on cost-sharing and revenue-sharing to coordinate this tripartite operational system.

Findings

The study reveals that, under simple cooperative contracts, the optimal decision does not yield maximum profits for the operational system due to the “double-marginal effect”. However, under the impact of the joint coordination contract, which combines cost-sharing and revenue-sharing as proposed in this paper, gas stations will consider the charging pile manufacturer’s costs and government subsidies when determining the optimal quantity and price. This not only achieves system coordination but also results in Pareto improvement in the benefits of all system members by adjusting contract parameters.

Originality/value

The value of this research lies in its insights into operational strategies for the construction of charging piles for electric vehicles. By analyzing optimal decisions under different contract arrangements, the study provides guidance to relevant stakeholders, enabling the operational system to achieve greater efficiency and coordination and realize more extensive Pareto improvements. Furthermore, it extends the application of coordination contract theory in the context of charging pile construction and operations.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 12 September 2023

Gerasimos G. Rigatos, Masoud Abbaszadeh, Pierluigi Siano and Jorge Pomares

Permanent magnet synchronous spherical motors can have wide use in robotics and industrial automation. They enable three-DOF omnidirectional motion of their rotor. They are…

Abstract

Purpose

Permanent magnet synchronous spherical motors can have wide use in robotics and industrial automation. They enable three-DOF omnidirectional motion of their rotor. They are suitable for several applications, such as actuation in robotics, traction in electric vehicles and use in several automation systems. Unlike conventional synchronous motors, permanent magnet synchronous spherical motors consist of a fixed inner shell, which is the stator, and a rotating outer shell, which is the rotor. Their dynamic model is multivariable and strongly nonlinear. The treatment of the associated control problem is important.

Design/methodology/approach

In this paper, the multivariable dynamic model of permanent magnet synchronous spherical motors is analysed, and a nonlinear optimal (H-infinity) control method is developed for it. Differential flatness properties are proven for the spherical motors’ state-space model. Next, the motors’ state-space description undergoes approximate linearization with the use of first-order Taylor series expansion and through the computation of the associated Jacobian matrices. The linearization process takes place at each sampling instance around a time-varying operating point, which is defined by the present value of the motors’ state vector and by the last sampled value of the control input vector. For the approximately linearized model of the permanent magnet synchronous spherical motors, a stabilizing H-infinity feedback controller is designed. To compute the controller’s gains, an algebraic Riccati equation has to be repetitively solved at each time-step of the control algorithm. The global stability properties of the control scheme are proven through Lyapunov analysis. Finally, the performance of the nonlinear optimal control method is compared against a flatness-based control approach implemented in successive loops.

Findings

Due to the nonlinear and multivariable structure of the state-space model of spherical motors, the solution of the associated nonlinear control problem is a nontrivial task. In this paper, a novel nonlinear optimal (H-infinity) control approach is proposed for the dynamic model of permanent magnet synchronous spherical motors. The method is based on approximate linearization of the motor’s state-space model with the use of first-order Taylor series expansion and the computation of the associated Jacobian matrices. Furthermore, the paper has introduced a different solution to the nonlinear control problem of the permanent magnet synchronous spherical motor, which is based on flatness-based control implemented in successive loops.

Research limitations/implications

The presented control approaches do not exhibit any limitations, but on the contrary, they have specific advantages. In comparison to global linearization-based control schemes (such as Lie-algebra-based control), they do not make use of complicated changes of state variables (diffeomorphisms) and transformations of the system's state-space description. The computed control inputs are applied directly to the initial nonlinear state-space model of the permanent magnet spherical motor without the intervention of inverse transformations and thus without coming against the risk of singularities.

Practical implications

The motion control problem of spherical motors is nontrivial because of the complicated nonlinear and multivariable dynamics of these electric machines. So far, there have been several attempts to apply nonlinear feedback control to permanent magnet-synchronous spherical motors. However, due to the model’s complexity, few results exist about the associated nonlinear optimal control problem. The proposed nonlinear control methods for permanent magnet synchronous spherical motors make more efficient, precise and reliable the use of such motors in robotics, electric traction and several automation systems.

Social implications

The treated research topic is central for robotic and industrial automation. Permanent magnet synchronous spherical motors are suitable for several applications, such as actuation in robotics, traction in electric vehicles and use in several automation systems. The solution of the control problem for the nonlinear dynamic model of permanent magnet synchronous spherical motors has many industrial applications and therefore contributes to economic growth and development.

Originality/value

The proposed nonlinear optimal control method is novel compared to past attempts to solve the optimal control problem for nonlinear dynamical systems. Unlike past approaches, in the new nonlinear optimal control method, linearization is performed around a temporary operating point, which is defined by the present value of the system's state vector and by the last sampled value of the control inputs vector and not at points that belong to the desirable trajectory (setpoints). Besides, the Riccati equation which is used for computing the feedback gains of the controller is new, and so is the global stability proof for this control method. Compared to nonlinear model predictive control, which is a popular approach for treating the optimal control problem in industry, the new nonlinear optimal (H-infinity) control scheme is of proven global stability, and the convergence of its iterative search for the optimum does not depend on initial conditions and trials with multiple sets of controller parameters. It is also noteworthy that the nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state dependent Riccati equations (SDRE). The SDRE approaches can be applied only to dynamical systems which can be transformed into the linear parameter varying form. Besides, the nonlinear optimal control method performs better than nonlinear optimal control schemes, which use approximation of the solution of the Hamilton–Jacobi–Bellman equation by Galerkin series expansions. Furthermore, the second control method proposed in this paper, which is flatness-based control in successive loops, is also novel and demonstrates substantial contribution to nonlinear control for robotics and industrial automation.

Article
Publication date: 8 October 2018

Yan Li, Ming K. Lim and Ming-Lang Tseng

This paper studies green vehicle routing problems of cold chain logistics with the consideration of the full set of greenhouse gas (GHG) emissions and an optimization model of…

2086

Abstract

Purpose

This paper studies green vehicle routing problems of cold chain logistics with the consideration of the full set of greenhouse gas (GHG) emissions and an optimization model of green vehicle routing for cold chain logistics (with an acronym of GVRPCCL) is developed. The purpose of this paper is to minimize the total costs, which include vehicle operating cost, quality loss cost, product freshness cost, penalty cost, energy cost and GHG emissions cost. In addition, this research also investigates the effect of changing the vehicle maximum load in relation to cost and GHG emissions.

Design/methodology/approach

This study develops a mathematical optimization model, considering the total cost and GHG emission. The standard particle swarm optimization and modified particle swarm optimization (MPSO), based on an intelligent optimization algorithm, are applied in this study to solve the routing problem of a real case.

Findings

The results of this study show the extend of the proposed MPSO performing better in achieving green-focussed vehicle routing and that considering the full set of GHG costs in the objective functions will reduce the total costs and environmental-diminishing emissions of GHG through the comparative analysis. The research outputs also evaluated the effect of different enterprises’ conditions (e.g. customers’ locations and demand patterns) for better distribution routes planning.

Research limitations/implications

There are some limitations in the proposed model. This study assumes that the vehicle is at a constant speed and it does not consider uncertainties, such as weather conditions and road conditions.

Originality/value

Prior studies, particularly in green cold chain logistics vehicle routing problem, are fairly limited. The prior works revolved around GHG emissions problem have not considered methane and nitrous oxides. This study takes into account the characteristics of cold chain logistics and the full set of GHGs.

Details

Industrial Management & Data Systems, vol. 119 no. 3
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 3 June 2024

Qichao Shen

This study examined the reciprocal influence of demand learning and preference matching in the context of store brand customization. The demand-learning effect refers to the…

Abstract

Purpose

This study examined the reciprocal influence of demand learning and preference matching in the context of store brand customization. The demand-learning effect refers to the collection of market demand information through production, based on pre-order demands, enabling retailers to accurately predict and allocate product quantities, thus improving inventory management. The preference-matching effect involves engaging consumers in the production and design processes of store brands to align fully with their preferences, thereby increasing the purchase impact of store brand products and promoting consumption.

Design/methodology/approach

We employ game-theoretic models to analyze a two-echelon supply chain consisting of a manufacturer and a retailer. The retailer offers both national brands, manufactured by the supplier and in-house store brands. To enhance their competitive edge, the retailer can adopt a customized strategy targeting the store brand to attract a wider consumer base.

Findings

The analysis reveals that, under low commission fees, the manufacturer consistently opts for high production quantities, irrespective of the level of demand uncertainty. However, when the perceived value of a store brand is low and demand uncertainty is either low or high, the retailer should choose a minimal or zero production quantity. The decision-making process is influenced by the customization process, wherein the effects of demand learning and preference matching occasionally mutually reinforce each other. Specifically, when the perceived value of a store brand is low, or the product cost is high, along with high customization costs, the interplay between demand learning and preference matching becomes mutually inhibiting. Consequently, the significance of store brand customization diminishes.

Originality/value

This study enhances the current body of knowledge by providing a deeper understanding of the theoretical value of store brand customization. In addition, it offers valuable decision-making support to enterprises by assisting them in selecting appropriate inventory and customization strategies.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 2 May 2024

Gerasimos G. Rigatos

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1…

Abstract

Purpose

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1 are often used in the joints of a robotic manipulator. This results into an actuator with large mechanical impedance (also known as nonback-drivable actuator). This in turn generates high contact forces when collision of the robotic mechanism occur and can cause humans’ injury. Another disadvantage of electric actuators is that they can exhibit overheating when constant torques have to be provided. Comparing to electric actuators, pneumatic actuators have promising properties for robotic applications, due to their low weight, simple mechanical design, low cost and good power-to-weight ratio. Electropneumatically actuated robots usually have better friction properties. Moreover, because of low mechanical impedance, pneumatic robots can provide moderate interaction forces which is important for robotic surgery and rehabilitation tasks. Pneumatic actuators are also well suited for exoskeleton robots. Actuation in exoskeletons should have a fast and accurate response. While electric motors come against high mechanical impedance and the risk of causing injuries, pneumatic actuators exhibit forces and torques which stay within moderate variation ranges. Besides, unlike direct current electric motors, pneumatic actuators have an improved weight-to-power ratio and avoid overheating problems.

Design/methodology/approach

The aim of this paper is to analyze a nonlinear optimal control method for electropneumatically actuated robots. A two-link robotic exoskeleton with electropneumatic actuators is considered as a case study. The associated nonlinear and multivariable state-space model is formulated and its differential flatness properties are proven. The dynamic model of the electropneumatic robot is linearized at each sampling instance with the use of first-order Taylor series expansion and through the computation of the associated Jacobian matrices. Within each sampling period, the time-varying linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. An H-infinity controller is designed for the linearized model of the robot aiming at solving the related optimal control problem under model uncertainties and external perturbations. An algebraic Riccati equation is solved at each time-step of the control method to obtain the stabilizing feedback gains of the H-infinity controller. Through Lyapunov stability analysis, it is proven that the robot’s control scheme satisfies the H-infinity tracking performance conditions which indicate the robustness properties of the control method. Moreover, global asymptotic stability is proven for the control loop. The method achieves fast convergence of the robot’s state variables to the associated reference trajectories, and despite strong nonlinearities in the robot’s dynamics, it keeps moderate the variations of the control inputs.

Findings

In this paper, a novel solution has been proposed for the nonlinear optimal control problem of robotic exoskeletons with electropneumatic actuators. As a case study, the dynamic model of a two-link lower-limb robotic exoskeleton with electropneumatic actuators has been considered. The dynamic model of this robotic system undergoes first approximate linearization at each iteration of the control algorithm around a temporary operating point. Within each sampling period, this linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. The linearization process relies on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modeling error which is due to the truncation of higher-order terms from the Taylor series is considered to be a perturbation which is asymptotically compensated by the robustness of the control algorithm. To stabilize the dynamics of the electropneumatically actuated robot and to achieve precise tracking of reference setpoints, an H-infinity (optimal) feedback controller is designed. Actually, the proposed H-infinity controller for the model of the two-link electropneumatically actuated exoskeleton achieves the solution of the associated optimal control problem under model uncertainty and external disturbances. This controller implements a min-max differential game taking place between: (i) the control inputs which try to minimize a cost function which comprises a quadratic term of the state vector’s tracking error and (ii) the model uncertainty and perturbation inputs which try to maximize this cost function. To select the stabilizing feedback gains of this H-infinity controller, an algebraic Riccati equation is being repetitively solved at each time-step of the control method. The global stability properties of the H-infinity control scheme are proven through Lyapunov analysis.

Research limitations/implications

Pneumatic actuators are characterized by high nonlinearities which are due to air compressibility, thermodynamics and valves behavior and thus pneumatic robots require elaborated nonlinear control schemes to ensure their fast and precise positioning. Among the control methods which have been applied to pneumatic robots, one can distinguish differential geometric approaches (Lie algebra-based control, differential flatness theory-based control, nonlinear model predictive control [NMPC], sliding-mode control, backstepping control and multiple models-based fuzzy control). Treating nonlinearities and fault tolerance issues in the control problem of robotic manipulators with electropneumatic actuators has been a nontrivial task.

Practical implications

The novelty of the proposed control method is outlined as follows: preceding results on the use of H-infinity control to nonlinear dynamical systems were limited to the case of affine-in-the-input systems with drift-only dynamics. These results considered that the control inputs gain matrix is not dependent on the values of the system’s state vector. Moreover, in these approaches the linearization was performed around points of the desirable trajectory, whereas in the present paper’s control method the linearization points are related with the value of the state vector at each sampling instance as well as with the last sampled value of the control inputs vector. The Riccati equation which has been proposed for computing the feedback gains of the controller is novel, so is the presented global stability proof through Lyapunov analysis. This paper’s scientific contribution is summarized as follows: (i) the presented nonlinear optimal control method has improved or equally satisfactory performance when compared against other nonlinear control schemes that one can consider for the dynamic model of robots with electropneumatic actuators (such as Lie algebra-based control, differential flatness theory-based control, nonlinear model-based predictive control, sliding-mode control and backstepping control), (ii) it achieves fast and accurate tracking of all reference setpoints, (iii) despite strong nonlinearities in the dynamic model of the robot, it keeps moderate the variations of the control inputs and (iv) unlike the aforementioned alternative control approaches, this paper’s method is the only one that achieves solution of the optimal control problem for electropneumatic robots.

Social implications

The use of electropneumatic actuation in robots exhibits certain advantages. These can be the improved weight-to-power ratio, the lower mechanical impedance and the avoidance of overheating. At the same time, precise positioning and accurate execution of tasks by electropneumatic robots requires the application of elaborated nonlinear control methods. In this paper, a new nonlinear optimal control method has been developed for electropneumatically actuated robots and has been specifically applied to the dynamic model of a two-link robotic exoskeleton. The benefit from using this paper’s results in industrial and biomedical applications is apparent.

Originality/value

A comparison of the proposed nonlinear optimal (H-infinity) control method against other linear and nonlinear control schemes for electropneumatically actuated robots shows the following: (1) Unlike global linearization-based control approaches, such as Lie algebra-based control and differential flatness theory-based control, the optimal control approach does not rely on complicated transformations (diffeomorphisms) of the system’s state variables. Besides, the computed control inputs are applied directly on the initial nonlinear model of the electropneumatic robot and not on its linearized equivalent. The inverse transformations which are met in global linearization-based control are avoided and consequently one does not come against the related singularity problems. (2) Unlike model predictive control (MPC) and NMPC, the proposed control method is of proven global stability. It is known that MPC is a linear control approach that if applied to the nonlinear dynamics of the electropneumatic robot, the stability of the control loop will be lost. Besides, in NMPC the convergence of its iterative search for an optimum depends on initialization and parameter values selection and consequently the global stability of this control method cannot be always assured. (3) Unlike sliding-mode control and backstepping control, the proposed optimal control method does not require the state-space description of the system to be found in a specific form. About sliding-mode control, it is known that when the controlled system is not found in the input-output linearized form the definition of the sliding surface can be an intuitive procedure. About backstepping control, it is known that it cannot be directly applied to a dynamical system if the related state-space model is not found in the triangular (backstepping integral) form. (4) Unlike PID control, the proposed nonlinear optimal control method is of proven global stability, the selection of the controller’s parameters does not rely on a heuristic tuning procedure, and the stability of the control loop is assured in the case of changes of operating points. (5) Unlike multiple local models-based control, the nonlinear optimal control method uses only one linearization point and needs the solution of only one Riccati equation so as to compute the stabilizing feedback gains of the controller. Consequently, in terms of computation load the proposed control method for the electropneumatic actuator’s dynamics is much more efficient.

Article
Publication date: 1 June 2000

X.‐Q. Chen and J.C.F. Pereira

Numerical results are reported for a dilute turbulent liquid‐solid flow in an axisymmetric sudden‐expansion pipe with an expansion ratio 2:1. The two‐phase flow has a mass‐loading…

Abstract

Numerical results are reported for a dilute turbulent liquid‐solid flow in an axisymmetric sudden‐expansion pipe with an expansion ratio 2:1. The two‐phase flow has a mass‐loading ratio low enough for particle collision to be negligible. The numerical predictions for the dilute two‐phase flow are based on a hybrid Eulerian‐Lagrangian model. A nonlinear k‐ε model is used for the fluid flow to account for the turbulence anisotropy and an improved eddy‐interaction model is used for the particulate flow to account for the effects of turbulence anisotropy, turbulence inhomogeneity, particle drift, and particle inertia on particle dispersion. The effects of the coupling sources, the added mass, the lift force and the shear stress on two‐phase flow predictions are separately studied. The numerical predictions obtained with the improved and conventional particle dispersion models are compared with experimental measurements for the mean and fluctuating velocities at the different measured planes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 10 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 October 2017

Qiang Ma and Zhenqian Chen

The paper aims to discuss the mass transfer of gas mixtures under the influence of electrohydrodynamic (EHD) flow induced by direct current (DC) corona discharge of wire-to-plane…

Abstract

Purpose

The paper aims to discuss the mass transfer of gas mixtures under the influence of electrohydrodynamic (EHD) flow induced by direct current (DC) corona discharge of wire-to-plane electrode, using a coupled numerical model.

Design/methodology/approach

A coupled numerical method is developed in this paper. Lattice Boltzmann model of binary gas mixtures coupled with the Coulomb force as an external force is introduced to predict the gas flow and species transport affected by EHD flow. Meanwhile, the distributions of electric field and space charge density during DC corona discharge are obtained using the finite difference method and the method of characteristics.

Findings

The numerical results of mass transfer effected by EHD flow reveal that the high electric field intensity is observed near the surface of corona wire, which causes the higher Coulomb force to form the EHD flow pattern of anticlockwise vortex. The EHD vortex flow plays a considerable role in the mass transport enhancement of gas species emit from the plane electrode, and the significant difference of the local Sherwood number is presented along the direction parallel to plane electrode. In addition, the enhance effectiveness with the different applied voltage is assessed, and the influencing mechanism of enhancement is investigated in this work.

Originality/value

The proposed numerical model will be useful in the study of mass transfer and fluid flow effected by EHD.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 40000