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Abstract

Purpose – 1. To improve the causality analysis performance, a novel causality detector based on time-delayed
convergent cross mapping (TD-CCM) is proposed in this work. 2. Identify the root cause of plant-wide
oscillations in process control system.
Design/methodology/approach – A novel causality analysis framework is proposed based on denoising
and periodicity-removing TD-CCM (time-delayed convergent cross mapping). We first point out that noise and
periodicity have adverse effects on causality detection. Then, the empirical mode decomposition (EMD) and
detrended fluctuation analysis (FDA) are combined to achieve denoising. The periodicities are effectively
removed through singular spectrum analysis (SSA). Following, the TD-CCM can accurately capture the
causalities and locate the root cause by analyzing the filtered signals.
Findings – 1. A novel causality detector based on denoising and periodicity-removing time-delayed
convergent cross mapping (TD-CCM) is proposed. 2. Simulation studies show that the proposedmethod is able
to improve the causality analysis performance. 3. Industrial case study shows the proposedmethod can be used
to analyze the root cause of plant-wide oscillations in process control system.
Originality/value – 1. A novel causality detector based on denoising and periodicity-removing time-delayed
convergent cross mapping (TD-CCM) is proposed. 2. The influences of noise and periodicity on causality
analysis are investigated. 3. Simulations and industrial case shows that the proposed method can improve the
causality analysis performance and can be used to identify the root cause of plant-wide oscillations in process
control system.

Keywords Causality analysis, Root cause diagnosis, Oscillation diagnosis, Control performance monitoring,

Convergent cross mapping

Paper type Research paper

1. Introduction
Oscillations are a common cause of performance degradation of process control system. They
may generate in one control loop and propagate to other units (Lang et al., 2018a). Then the
whole plant may oscillate. These oscillations are likely to result in the waste of energy and
materials, product quality fluctuation, and even poor safety (Chen et al., 2020a). It is important
for engineers and operators to correctly identify the root cause of oscillations as soon as
possible (Yang et al., 2014; Lang et al., 2019). However, due to the disturbances of noises,
periodicities, nonlinearities (Lang et al., 2018b) and nonstationarities (Xie et al., 2016), it is
difficult to achieve the goal (Chen et al., 2020b). Therefore, a lot of data-driven causality
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analysis methods have been introduced to revealing the propagation paths and locating
the root cause in the past decade (Lindner et al., 2019a). A brief review is provided in the
following.

Bauer and Thornhill (2008) analyzed the cross-correlation between variables to detect
causality. In this method, the time delay corresponding to the maximum value of cross-
correlation function (CCF) is regarded as the optimal delay. This CCF-based approach is
simple and practical, but its results are not reliable in the case of nonlinearity. (Yuan and
Qin, 2014) combined the principal component analysis (PCA) and the multivariate
Granger causality to find the root cause of plant-wide oscillations. Granger causality is a
popular method in various applications. However, it requires variables are independent
and satisfy the linear stationary condition. Besides the causality methods in time
domain, some related approaches are developed from the perspective of frequency
domain, such as spectral Granger causality (SGC) (Xie et al., 2019), partial directed
coherence (PDC) (Zhang et al., 2015) and directed transfer function (DTF) (Yang et al.,
2014), to name a few. Spectral Granger causality is based on the Fourier Transform,
which is limited to processing the linear and stationary signals. Both PDC and DTF can
describe the direction of cause and effect, but are not able to quantify the direct
causality.

The abovemethods are restricted to analyzing linear relationships, which is not consistent
with the fact that most industrial processes are nonlinear. Bayesian network learning (Yang
and Xiao, 2006) utilized the graph structure with conditional probabilities to describe the
causalities among various process variables. Nevertheless, Bayesian network is a directed
acyclic graph, which is not proper to model the dynamic process. And the physical
explanation of probabilities in Bayesian network is not straightforward, which cannot be
easily accepted by engineers. Although (Richardson et al., 1996) developed the cyclic causal
discovery framework to allow the existence of cycles, it is difficult to collect massive
industrial data. Lindner et al. (2019a) made a comprehensive analysis of Granger causality
and transfer entropy in process control system and Lindner et al. (2019b) provided a
systematic workflow for oscillation diagnosis using transfer entropy. However, Transfer
entropy’s performance depends on probability density function, which is not easy to be
estimated.

In 2012, Sugihara et al. (2012) proposed a novel causality method called as convergent
cross mapping (CCM) for analyzing relationships in complex systems. It is mainly based
on the Takens’ theorem (Takens, 1981) that if variable X is a cause of variable Y, then the
historical information of X can be recovered from Y alone. CCM uses simplex projection to
quantify the correspondence between the states of X and Y. And the Pearson correlation
coefficients between estimated states recovered from Y and real states are adopted to
measure the cross mapping ability, which indicates the causality degree. CCM has been
widely used in various cases, but its criterion of convergence is too subjective. Recently,
Ye et al. (2015) developed a time-delayed convergent cross mapping (TD-CCM) by
assuming there is a time lag between the cause variable and the effect variable. It is
reported that CCM shows the best performance when two variables are matched in
accordance with proper time lag (Luo et al., 2017). TD-CCM overcomes the subjectivity of
the conclusion under the original CCM and can directly give the corresponding results.
TD-CCM is the most promising progress of CCM in recent years. However, when it is
applied to analyze oscillations in process control, the noise and periodicity degrade its
performance. To eliminate the influences, this paper proposes to combine empirical mode
decomposition (EMD) (Huang et al., 1998) and detrended fluctuation analysis (DFA)
(Kantelhardt et al., 2002) to achieve denoising. The periodicities are removed by singular
spectrum analysis (SSA) (Hassani and Thomakos, 2010). Following, the TD-CCM can
accurately capture the causalities and locate the root cause by analyzing the filtered
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signals. Simulations shows that the proposed denoising and periodicity-removing
framework is able to improve the causality analysis performance of TD-CCM. In the end,
the effectiveness and advantages of the proposed method are validated in Tennessee
Eastman process.

The remainder of this paper is organized as follows. Section 2 provides an overview of
CCM and TD-CCM. The proposed causality analysis framework based on denoising and
periodicity-removing TD-CCM is detailed in Section 3. The industrial case is studied in
Section 4, followed by conclusions.

2. Preliminaries
2.1 Convergent cross mapping
(Sugihara et al., 2012) proposed the convergent cross mapping (CCM) based on Taken’s
theorem (Takens, 1981) to analyze the causality between different variables in a
nonlinear system. CCM assumes that if variable X has an effect on variable Y, denoted as
X →Y , Y will contain the information of X. The corresponding causality can be tested by
measuring the correlation between reconstructed manifolds of X and Y. More specifically,
for two time series X and Y with length N, the reconstructed states at time t can be
expressed as

Xt ¼ ½XðtÞ; Xðt � τÞ; Xðt � 2τÞ; . . . ; Xðt � ðE � 1ÞτÞ�;
Yt ¼ ½Y ðtÞ; Y ðt � τÞ; Y ðt � 2τÞ; . . . ; Y ðt � ðE � 1ÞτÞ�;
∀t ¼ ðE � 1Þτ þ 1; ðE � 1Þτ þ 2; . . . ; N

(1)

where E is the embedding dimension; τ is the time lag (default is 1). The embedding
dimension is selected according to G-curve method (Liu et al., 2008). The sets of Xt and Yt

correspond to their shadow manifolds MX and MY , respectively. According to Taken’s
theorem (Takens, 1981), ifX andY are coupled,MX andMY are different observation forms
of primitive manifold, i.e. diffeomorphism. Conversely, if there is no relationship between
X and Y, the reconstructed states ofMX andMY will be far away. When X has an effect on
Y, the information ofMX can be accurately estimated fromMY , butMY cannot be recovered
from MX . CCM uses Pearson correlation coefficient to quantify the accuracy of X
estimation from Y, shown as

ρbXijMY
¼

P bXiXi � N*Xi bXiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�P
Xi2 � N*Xi

2
r � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�P bXi2 � N*bXi2

r � (2)

where bXi is the estimation of Xi. The larger value of ρbX jMY

, the stronger the influence of X
on Y.

2.2 Time-delayed convergent cross mapping
It is reported that CCM is effective to detect causality from systems with weak to moderate
coupling strength, but strong unidirectional forcing may lead to the phenomenon of
generalized synchrony (Sugihara et al., 2012). Besides, Ye et al. (2015) pointed out that CCM
suffered two main limitations: (1) This method only considers the causality between the
variables at the same time (zero lag). However, there are a lot of causalities with time delay
in the actual process, in which CCM would meet difficulties or failures; (2) CCM judges
causality by observing whether the correlation coefficient curve converges, which is
subjective. To tackle these issues, Ye et al. (2015) proposed a time-delayed CCM (TD-CCM).
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The main difference between CCM and TD-CCM is that the latter utilizes MY to estimate
xtþλ, in which λ is the time lag; while in CCM, MY is used to calculate the estimation of xt.
In practice, different values of λ are tested to calculate the cross mapping index ρ. The λ
corresponding to the maximum ρ value is the optimal time delay λ�. λ� ≤ 0 corresponds to
the relationship X →Y , because λ� ≤ 0 means the past information of causal variable is
contained in effect variable. If λ� > 0, it reflects the future information of cause variable can
predict the effect variable, which is ridiculous. Thus, λ� > 0 indicates the causal
relationship from X to Y is not tenable. In this way, TD-CCM can automatically and
objectively determine causality.

Herein, a coupled Lorenz system (3) is constructed to show the performance of CCM and
TD-CCM.

_XiðtÞ ¼ 10ðYiðtÞ � XiðtÞÞ þ ξX ;i

_Y iðtÞ ¼ 28XiðtÞ � YiðtÞ � XiðtÞZiðtÞ þ
X
j≠i

KijY
2
j ðt � τijÞ þ ξY ;i

_Z iðtÞ ¼ XiðtÞYiðtÞ � 8=3ZiðtÞ þ ξZ ;i
i; j ¼ 1; 2;

K12 ¼ 1; K21 ¼ 0;

τ12 ¼ 1;

(3)

where ξ is noise. X1, Y1 and Z1 belong to system 1; X2, Y2 and Z2 belong to system 2; Y1 and
Z1, Y2 and Z2 are respectively coupled. Y2 in system 2 affects Y1 in system 1 in one
direction. Z1 and Z2 are selected for causality analysis. Note that Z2 is the cause of Z1.
According to G-curve method (Liu et al., 2008), the embedding dimension is set as E� ¼ 3.
The causality results of CCM and TD-CCM are displayed in Figures 1a and b,
respectively. It can be seen from Figure 1a that both red and blue curves tend to
convergence, which indicates Z1 and Z2 are mutually coupled, i.e. two-way causality. This
judgment contradicts the real situation of the system. From Figure 1b, It is observed that
the optimal time lag of Z2 → Z1 is λ

� ¼ −50, which indicates Z2 → Z1; while for Z1 → Z2, the
optimal time lag is positive, which is not consistent with the fact that the result event
must happen after the cause event. It is concluded that Z2 is the cause of Z1. Therefore,
compared with the original CCM, the TD-CCM not only can automatically and objectively
determine causality, but also solves the problem that the original CCM is not able to deal
with strong coupling relationship.

3. Proposed framework
Although TD-CCM shows better performance than the original CCM, it meets difficulties
in the case of processing signals from process control system. For data collected
from industrial environments, they are contaminated by noise and periodicity (Chen et al.,
2019), which have an adverse influence on TD-CCM. Therefore, a denoising and
periodicity-removing framework is proposed to improve TD-CCM’s performance in this
section.

3.1 Adverse influences of noise and periodicity on TD-CCM
A four-input and four-output system with correlated disturbances is taken from Wang et al.
(2020) to show the influences of noise and periodicity onTD-CCM. Its transfer functionmatrix
Gðq−1Þ is
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Figure 1.

Causality results
detected by (a) CCM

and (b) TD-CCM. The
red and blue curves

represent the causality
results in Z2 → Z1 and
Z1 → Z2, respectively.

For (a) CCM, the
horizontal axis and

vertical axis stand for
the sample length and

causality strength,
respectively. Through
the trends, it is judged

that Z1 and Z2 are
mutually coupled, i.e.

two-way causality. For
(b) TD-CCM, the

horizontal axis and
vertical axis stand for

the time lag and
causality strength,
respectively. It is
observed that the

optimal time lag of
Z2 → Z1 is λ

� ¼ −50,
which indicates

Z2 → Z1; while for
Z1 → Z2, the optimal
time lag is positive,

which is not consistent
with the fact that the

result event must have
happened after the

cause event. Therefore,
it is concluded Z2 → Z1.
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G
�
q−1

�¼

2
666666666666664

0:05q−3

1�0:95q−1
0

0:7q−3

1�0:3q−1
0

0:02966q−3

1�1:627q−1þ0:706q−2
0:0627q−6

1�0:937q−1
0 0

0
0:235q−5

1�0:765q−1
0:5q−2

1�q−1þ0:25q−2
0

0:5q−5�0:4875q−6

1�1:395q−1þ0:455q−2
0 0

0:2q−6

1�0:8q−1

3
777777777777775

; (4)

and the corresponding disturbance model is

N
�
q−1

�¼

2
666666666666664

1�0:1875q−1

1�0:9875q−1
0 0 0

0
1�0:1875q−1

1�0:9875q−1
0 0

0 0
1�0:1875q−1

1�0:9875q−1
0

0 0 0
1�0:1875q−1

1�0:9875q−1

3
777777777777775

: (5)

The disturbance source is generated by Gaussian white noise sequences. These loops

are regulated by four PI controllers with PI ¼ KC

�
1þ 1

Tr
3 ΔT

1− q−1

�
, where ΔT is the

controller sampling time. When the proportional gain and the integral time are
KC ¼ ½ 0:816 0:625 0:184 0:37 � and Tr ¼ ½ 20 16 2:86 5 � respectively, these
loops are well controlled and the system works normally. A data-driven valve
stiction model (Choudhury et al., 2008) is embedded into the third loop to simulate the fault
source.

First, we takes the noise level K ¼ 0:1% as the benchmark, in which the noise level is
rather low. The corresponding process variables are displayed in Figure 2a. TD-CCM
tests the causal relationship of six pairs of variables, i.e. L1 −L2, L1 −L3, L1 −L4, L2 −L3,
L2 −L4, and L3 −L4. The corresponding causality results are visualized in Figure 2b. It is
observed that L3 is the source because L3 →L1;L2;L4 and L1 →L2;L4. These causality
paths are completely consistent with the predefined system structure (4). However, when
the noise level increases, such as K ¼ 10%, there will be many miscalculations in
TD-CCM. As displayed in Figures 3a and b, when the noise level increases, TD-CCM
thinks that there is a two-way causal relationship between loop 2 and loop 4 (marked
with red lines), which contradicts the prior system structure. To enrich the experiments,
we have counted the miscalculation of TD-CCM under different noise levels. The results
listed in Table 1 indicate that with the increase of noise level, the number of causal
misjudgments will go up. Therefore, it is necessary to denoise before using TD-CCM to
analyze causality.

Second, we test the performance of TD-CCM when the signals are contaminated by
various periodicities. The amplitudes and frequencies of periodicities vary from 12.5%
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Figure 3.
(a): Process variables in
the case of K ¼ 10%

and (b): The
corresponding

causality results
obtained from

TD-CCM. The red lines
are wrong direction

Table 1.
With the increase of

noise level, the number
of causal

misjudgments will
increase

Table 2.
Number of TD-CCM
misjudgments when

signals are
contaminated by

periodicities

Figure 2.
(a): Process variables in
the case of K ¼ 0:1%

and (b): The
corresponding

causality results
obtained from
TD-CCM. The

propagation paths are
consistent with the

predefined structure
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to 100% and 30 to 100 samples per cycle, respectively. The corresponding causality
results obtained from TD-CCM are listed in Table 2. It is observed that due to the
presence of periodicities, TD-CCM often misjudges the causalities in this system.
Therefore, the periodicities are expected to be removed before TD-CCM are applied to
detect causality.

Remark: The adverse effects of noise and periodicity on TD-CCM can be explained from
the following two aspects: (1) TD-CCM involves searching the nearest neighbor. Noises will
disturb the performance of nearest neighbor algorithm. Thus the causality results obtained
from TD-CCM may make mistakes; (2) Periodicities strengthen the invalid coordination
between variable, thus covering up the valuable information transfer flow, whichmay lead to
two-way causality or missing relationship.

3.2 Denoising and periodicity-removing
The last section demonstrates the necessity of denoising and periodicity-removing
procedure. Herein, a denoising and periodicity-removing framework is proposed to achieve
this goal.

First, the signals are decomposed into a series of modes by empirical mode decomposition
(EMD) (Huang et al., 1998). EMD is a modern time-frequency analysis technique. The
traditional signal processing methods, such as Fourier transform, are limited to processing
linear and stationary signals (Lang et al., 2020a). Although the wavelet decomposition can be
used to deal with complex signals, its parameters, such as decomposition level and mother
wavelet, should be provided in advance. On the contrary, EMD is totally adaptive and data-
driven. It is capable to extract the intrinsic mode functions from nonlinear and nonstationary
signals through a recursive sifting process that makes use of signal extrema. More
specifically, by interpolating the extremum of the signal, the average values of the upper and
lower envelops are obtained, and then the local average values of the signal are obtained.
These local average values are the low-frequency estimation of the data, and then they are
removed from the input data recursively to generate the high-frequency mode in the signal.
The process is repeated until all principal oscillatory modes present in the data are recovered.
In EMD, the signal xðtÞ can be expressed as

xðtÞ ¼
XK

i¼1

diðtÞ þ rðtÞ (6)

where diðtÞ is the mode and rðtÞ is trend.
After the signal is decomposed into a set of modes by EMD, the next task is to identify

which modes are noise. There are many methods that can be adopted, such as permutation
entropy (Lang et al., 2020b), normalized correlation coefficient (Chen et al., 2020c), etc.
Herein, the detrended fluctuation analysis (DFA) (Bryce and Sprague, 2012) is utilized to
identify whether the mode is noise. Specifically, a measurement factor α of each mode can
be calculated by DFA. If α≤ 0:5, the corresponding mode is regarded as noise. That is to
say, only modes with α > 0:5 are retained. The threshold 0.5 is recommended by Peng
et al. (1995).

Now, we turn our attention to remove periodicities. First, the signal is decomposed
by singular spectrum analysis (SSA) to obtain the eigenvalues and eigenvectors.
Because the eigenvectors corresponding to periodicities are sine or cosine sequences
with the same frequency and phase, the scatter diagram of a pair of eigenvectors of
periodicities will form an approximate polygon. In this way, periodicities can be
distinguished.
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The proposed causality analysis framework is described in Figure 4. It consists of three
parts: denoising, periodicity-removing and TD-CCM.

3.3 Simulation
In order to demonstrate the effectiveness and advantages of the proposed framework, the
four-input and four-output control system (4) is used as a subject. Loop 3 is contaminated
by noise and periodicity. Its original data, noise, periodicity, and filtered signal are
displayed in Figure 5. It is observed that the noise and periodicity are accurately
extracted through EMD-DFA-SSA procedures. Then, we apply TD-CCM to the original
data, and denoising and periodicity-removing data, respectively. The causality results are
reported in Figures 6a and b, respectively. It can been seen that the original TD-CCM
misjudges the causality L4 →L2 (red dotted line) and misses the causality between L1 and

Figure 4.
Flow chart of the
proposed method
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L4; while the proposed method is able to correctly capture all causalities in the control
system.

4. Industrial case study
In this section, the Tennessee Eastman process is used to demonstrate the utility of
the proposed method in industrial situation (Zheng et al., 2020). The corresponding
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Figure 5.
The first row is the
original data of loop 3.
The second row is the
noises extracted by
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periodicity-removing
signal

Figure 6.
Causality results
obtain from (a) original
TD-CCM and (b) the
proposed
improved work
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process schematic is shown in Figure 7. It mainly consists of five parts: a reactor, a
recycle compressor, a stripper, a product condenser, and a vapor separator. The
process is regulated under a decentralized control strategy (Ricker, 1996). The
predefined fault is added into loop 16. It can be seen from Figure 8 that the predefined
fault propagates to other loops and results in the plant-wide oscillations (Lang et al.,
2018c). In this test, the sampling period is 0.1 h and the analyzed data are sampled
from point 250–700. The causality detected by the proposed method is provided in
Figure 9. For comparison, multivariate Granger causality (Lindner et al., 2019a) is also
tested and the corresponding results are plotted in Figure 10. Because of the large
number of process variables, the causal network 9 is too complex. It is not easy to
distinguish the root cause with the naked eye. A net causal flow (Yuan and Qin, 2014)
can be computed for each variable which is equal to the number of outgoing flows
minus the number of incoming flows. According to Yuan and Qin (2014), a node with
a high positive causal flow is likely to be a source; while a high negative causal flow
represents a likely sink in the causality network. Figures 11a and b depict the causal
flow obtained from the proposed method and multivariate Granger causality,
respectively. The significance level of hypothesis test is 0.05 for multivariate
Granger causality. In Figure 11a, the variable 16 and 17 have the largest positive
causal flow, and thus are regarded as the potential root causes. Because variable 16
has one-way causal effect on variable 17 in Figure 9, it can be concluded that variable
16 is the real root cause. By contrast, the potential root causes of multivariate Granger
causality are variable 6 and 15, which do not contain the predefined root cause.
Therefore, the proposed method is successful to be applied to analyze the root cause
in Tennessee Eastman process. And it shows better performance than the classical
multivariate Granger causality.

Figure 7.
Process schematic of a

plant from Eastman
chemical company

Causality
analysis in

process control

35



0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
Sa

m
pl

e

0

0.
2

0.
4

Loop1

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
Sa

m
pl

e

36
00

37
00

38
00

Loop2

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
Sa

m
pl

e

44
00

45
00

46
00

Loop3

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
Sa

m
pl

e

9

9.
5

Loop4

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
Sa

m
pl

e

0

0.
51

Loop5

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
Sa

m
pl

e

2426 Loop6

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
Sa

m
pl

e

222324 Loop7

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
Sa

m
pl

e

10
0

10
5

Loop8
0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

Sa
m

pl
e

05010
0

Loop9

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
Sa

m
pl

e

405060 Loop10

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
Sa

m
pl

e

606570 Loop11

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
Sa

m
pl

e

26
00

27
00

28
00

Loop12

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
Sa

m
pl

e

5055 Loop13

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
Sa

m
pl

e

606570 Loop14

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
Sa

m
pl

e

5055 Loop15

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
Sa

m
pl

e

12
0

13
0

Loop16

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
Sa

m
pl

e

809010
0

Loop17

Figure 8.
Trends of process
variables of 17 loops in
Tennessee Eastman
process
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5. Conclusions
In this paper, a novel causality analysis framework is proposed based on denoising and
periodicity-removing TD-CCM. First, the adverse effects of noise and periodicity are
investigated. Then, the EMD and FDA are combined to achieve denoising. And SSA are
used to remove the periodicities. Simulations demonstrate the proposed denoising and
periodicity-removing procedure can effectively improve the performance of TD-CCM. It
can reduce the miscalculation and omission of causality. In the end, the proposed
causality analysis framework is applied to Tennessee Eastman process to identify
the root cause of plant-wide oscillations. The application results show that the
proposed method is effective and promising for root cause diagnosis in process control
system.
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