Computational modeling of a dilute turbulent liquid‐solid flow using a Eulerian‐Lagrangian approach
International Journal of Numerical Methods for Heat & Fluid Flow
ISSN: 0961-5539
Article publication date: 1 June 2000
Abstract
Numerical results are reported for a dilute turbulent liquid‐solid flow in an axisymmetric sudden‐expansion pipe with an expansion ratio 2:1. The two‐phase flow has a mass‐loading ratio low enough for particle collision to be negligible. The numerical predictions for the dilute two‐phase flow are based on a hybrid Eulerian‐Lagrangian model. A nonlinear k‐ε model is used for the fluid flow to account for the turbulence anisotropy and an improved eddy‐interaction model is used for the particulate flow to account for the effects of turbulence anisotropy, turbulence inhomogeneity, particle drift, and particle inertia on particle dispersion. The effects of the coupling sources, the added mass, the lift force and the shear stress on two‐phase flow predictions are separately studied. The numerical predictions obtained with the improved and conventional particle dispersion models are compared with experimental measurements for the mean and fluctuating velocities at the different measured planes.
Keywords
Citation
Chen, X.‐. and Pereira, J.C.F. (2000), "Computational modeling of a dilute turbulent liquid‐solid flow using a Eulerian‐Lagrangian approach", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 10 No. 4, pp. 409-432. https://doi.org/10.1108/09615530010327396
Publisher
:MCB UP Ltd
Copyright © 2000, MCB UP Limited