Search results

1 – 8 of 8
Article
Publication date: 25 October 2021

Liu-Qing Li, Yi-Tian Gao, Xin Yu, Gao-Fu Deng and Cui-Cui Ding

This paper aims to study the Gramian solutions and solitonic interactions of a (2 + 1)-dimensional Broer–Kaup–Kupershmidt (BKK) system, which models the nonlinear and dispersive…

Abstract

Purpose

This paper aims to study the Gramian solutions and solitonic interactions of a (2 + 1)-dimensional Broer–Kaup–Kupershmidt (BKK) system, which models the nonlinear and dispersive long gravity waves traveling along two horizontal directions in the shallow water of uniform depth.

Design/methodology/approach

Pfaffian technique is used to construct the Gramian solutions of the (2 + 1)-dimensional BKK system. Asymptotic analysis is applied on the two-soliton solutions to study the interaction properties.

Findings

N-soliton solutions in the Gramian with a real function ζ(y) of the (2 + 1)-dimensional BKK system are constructed and proved, where N is a positive integer and y is the scaled space variable. Conditions of elastic and inelastic interactions between the two solitons are revealed asymptotically. For the three and four solitons, elastic, inelastic interactions and soliton resonances are discussed graphically. Effect of the wave numbers, initial phases and ζ(y) on the solitonic interactions is also studied.

Originality/value

Shallow water waves are studied for the applications in environmental engineering and hydraulic engineering. This paper studies the shallow water waves through the Gramian solutions of a (2 + 1)-dimensional BKK system and provides some phenomena that have not been studied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 December 2022

Abdul-Majid Wazwaz, Lamiaa El-Sherif and Samir El-Tantawy

This paper aims to propose a new (3+1)-dimensional integrable Hirota bilinear equation characterized by five linear partial derivatives and three nonlinear partial derivatives.

Abstract

Purpose

This paper aims to propose a new (3+1)-dimensional integrable Hirota bilinear equation characterized by five linear partial derivatives and three nonlinear partial derivatives.

Design/methodology/approach

The authors formally use the simplified Hirota's method and lump schemes for determining multiple soliton solutions and lump solutions, which are rationally localized in all directions in space.

Findings

The Painlevé analysis shows that the compatibility condition for integrability does not die away at the highest resonance level, but integrability characteristics is justified through the Lax sense.

Research limitations/implications

Multiple-soliton solutions are explored using the Hirota's bilinear method. The authors also furnish a class of lump solutions using distinct values of the parameters via the positive quadratic function method.

Practical implications

The authors also retrieve a bunch of other solutions of distinct structures such as solitonic, periodic solutions and ratio of trigonometric functions solutions.

Social implications

This work formally furnishes algorithms for extending integrable equations and for the determination of lump solutions.

Originality/value

To the best of the authors’ knowledge, this paper introduces an original work with newly developed Lax-integrable equation and shows new useful findings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Article
Publication date: 7 June 2023

Abdul-Majid Wazwaz, Weaam Alhejaili and Samir El-Tantawy

The purpose of this study is to form a linear structure of components of the modified Korteweg–De Vries (mKdV) hierarchy. The new model includes 3rd order standard mKdV equation…

Abstract

Purpose

The purpose of this study is to form a linear structure of components of the modified Korteweg–De Vries (mKdV) hierarchy. The new model includes 3rd order standard mKdV equation, 5th order and 7th order mKdV equations.

Design/methodology/approach

The authors investigate Painlevé integrability of the constructed linear structure.

Findings

The Painlevé analysis demonstrates that established sum of integrable models retains the integrability of each component.

Research limitations/implications

The research also presents a set of rational schemes of trigonometric and hyperbolic functions to derive breather solutions.

Practical implications

The authors also furnish a variety of solitonic solutions and complex solutions as well.

Social implications

The work formally furnishes algorithms for extending integrable equations that consist of components of a hierarchy.

Originality/value

The paper presents an original work for developing Painlevé integrable model via using components of a hierarchy.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 April 2024

Abdul-Majid Wazwaz

This study aims to investigate two newly developed (3 + 1)-dimensional Kairat-II and Kairat-X equations that illustrate relations with the differential geometry of curves and…

Abstract

Purpose

This study aims to investigate two newly developed (3 + 1)-dimensional Kairat-II and Kairat-X equations that illustrate relations with the differential geometry of curves and equivalence aspects.

Design/methodology/approach

The Painlevé analysis confirms the complete integrability of both Kairat-II and Kairat-X equations.

Findings

This study explores multiple soliton solutions for the two examined models. Moreover, the author showed that only Kairat-X give lump solutions and breather wave solutions.

Research limitations/implications

The Hirota’s bilinear algorithm is used to furnish a variety of solitonic solutions with useful physical structures.

Practical implications

This study also furnishes a variety of numerous periodic solutions, kink solutions and singular solutions for Kairat-II equation. In addition, lump solutions and breather wave solutions were achieved from Kairat-X model.

Social implications

The work formally furnishes algorithms for studying newly constructed systems that examine plasma physics, optical communications, oceans and seas and the differential geometry of curves, among others.

Originality/value

This paper presents an original work that presents two newly developed Painlev\'{e} integrable models with insightful findings.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 October 2017

Abdul-Majid Wazwaz

The purpose of this paper is concerned with developing two-mode higher-order modified Korteweg-de Vries (KdV) equations. The study shows that multiple soliton solutions exist for…

Abstract

Purpose

The purpose of this paper is concerned with developing two-mode higher-order modified Korteweg-de Vries (KdV) equations. The study shows that multiple soliton solutions exist for essential conditions related to the nonlinearity and dispersion parameters.

Design/methodology/approach

The proposed technique for constructing a two-wave model, as presented in this work, has been shown to be very efficient. The employed approach formally derives the essential conditions for soliton solutions to exist.

Findings

The examined two-wave model features interesting results in propagation of waves and fluid flow.

Research limitations/implications

The paper presents a new and efficient algorithm for constructing and studying two-wave-mode higher-order modified KdV equations.

Practical implications

A two-wave model was constructed for higher-order modified KdV equations. The essential conditions for multiple soliton solutions to exist were derived.

Social implications

The work shows the distinct features of the standard equation and the newly developed equation.

Originality/value

The work is original and this is the first time for two-wave-mode higher-order modified KdV equations to be constructed and studied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2023

Na Liu

This paper aims to study the breather, lump-kink and interaction solutions of a (3 + 1)-dimensional generalized shallow water waves (GSWW) equation, which describes water waves…

41

Abstract

Purpose

This paper aims to study the breather, lump-kink and interaction solutions of a (3 + 1)-dimensional generalized shallow water waves (GSWW) equation, which describes water waves propagating in the ocean or is used for simulating weather.

Design/methodology/approach

Hirota bilinear form and the direct method are used to construct breather and lump-kink solutions of the GSWW equation. The “rational-cosh-cos-type” test function is applied to obtain three kinds of interaction solutions.

Findings

The fusion and fission of the interaction solutions between a lump wave and a 1-kink soliton of the GSWW equation are studied. The dynamics of three kinds of interaction solutions between lump, kink and periodic waves are discussed graphically.

Originality/value

This paper studies the breather, lump-kink and interaction solutions of the GSWW equation by using various approaches and provides some phenomena that have not been studied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 8 of 8